Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Integrative Medicine ; (12): 184-193, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971653

RESUMEN

OBJECTIVE@#Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.@*METHODS@#A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.@*RESULTS@#Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.@*CONCLUSION@#Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.


Asunto(s)
Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Ratones Desnudos , Glucógeno Sintasa Quinasa 3 beta/genética , beta Catenina/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Desmina/uso terapéutico , Antígeno Ki-67 , Línea Celular Tumoral , Hipoxia , ARN Mensajero/uso terapéutico , Proliferación Celular
2.
Mycobiology ; : 49-59, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1041746

RESUMEN

Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

3.
Journal of Integrative Medicine ; (12): 418-427, 2021.
Artículo en Inglés | WPRIM | ID: wpr-888773

RESUMEN

OBJECTIVE@#Exercise, as a common non-drug intervention, is one of several lifestyle choices known to reduce the risk of cancer. Mitochondrial division has been reported to play a key role in the occurrence and transformation of hepatocellular carcinoma (HCC). This study investigated whether exercise could regulate the occurrence and development of HCC through mitosis.@*METHODS@#Bioinformatics technology was used to analyze the expression level of dynamin-related protein 1 (DRP1), a key protein of mitochondrial division. The effects of DRP1 and DRP1 inhibitor (mdivi-1) on the proliferation and migration of liver cancer cells BEL-7402 were observed using cell counting kit-8, plate colony formation, transwell cell migration, and scratch experiments. Enzyme-linked immunosorbent assay, Western blot and real-time polymerase chain reaction were used to detect the expression of DRP1 and its downstream phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. A treadmill exercise intervention was tested in a nude mouse human liver cancer subcutaneous tumor model expressing different levels of DRP1. The size and weight of subcutaneous tumors in mice were detected before and after exercise.@*RESULTS@#The expression of DRP1 in liver cancer tissues was significantly upregulated compared with normal liver tissues (P < 0.001). The proliferation rate and the migration of BEL-7402 cells in the DRP1 over-expression group were higher than that in the control group. The mdivi-1 group showed an inhibitory effect on the proliferation and migration of BEL-7402 cells at 50 μmol/L. Aerobic exercise was able to inhibit the expression of DRP1 and decrease the size and weight of subcutaneous tumors. Moreover, the expression of phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) decreased in the exercise group. However, exercise could not change p-PI3K and p-AKT levels after knocking down DRP1 or using mdivi-1 on subcutaneous tumor.@*CONCLUSION@#Aerobic exercise can suppress the development of tumors partially by regulating DRP1 through PI3K/AKT pathway.


Asunto(s)
Animales , Ratones , Apoptosis , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Dinaminas , Neoplasias Hepáticas/terapia , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
4.
Artículo en Chino | WPRIM | ID: wpr-693340

RESUMEN

DNA hydrogels,combining the features of both DNA and hydrogels macromolecules,are endowed with the biologi?cal characters of DNA and the framed structure of hydrogels skeleton.Currently,most DNA hydrogels can achieve sensitive response to temperature,pH,light,and small molecule stimuli,by introducing specific groups or sequences into their backbone.Therefore, the functional properties of DNA hydrogels can be further improved.In this review,we introduce the mentioned stimuli-response DNA hydrogels,as well as their applications in drug controlled-releasing,targeted cancer therapy,biosensor and others.Finally,the pros?pects in the development of DNA hydrogels are also mentioned.

5.
Military Medical Sciences ; (12): 952-955,961, 2017.
Artículo en Chino | WPRIM | ID: wpr-694287

RESUMEN

Objective To investigate the effect of Abro1 on acute respiratory distress syndrome(ARDS)/acute lung injury(ALI)in mice.Methods Abro1 knock-out(KO)mice and wild type(WT)mice were both randomly divided into two groups for intratracheal instillation of lipopolysaccharide(LPS)or normal saline.At 6 or 24 hours after treatment, the pathological changes in lung tissue were observed by HE staining.At 6 hours after treatment,inflammatory immune cells and cytokines production(IL-6)in the bronchoalveolar lavage fluid were examined.Myeloperoxidase(MPO)and the mRNA level of IL-6 in the lung tissue were compared.Results At 24 hours after treatment, compared with WT mice treated with LPS,Abro1 KO mice showed a significantly lower lung injury score.At 6 hours after treatment,Abro1 depletion resulted in reduced levels of inflammatory immune cell infiltration and cytokines production(IL-6)in the bronchoalveolar lavage fluid(P<0.05).In addition,the MPO content and the mRNA level of IL-6 in the lung tissue were much lower than those in WT mice treated with LPS for 6 hours(P<0.05).Conclusion Abro1 deficiency can attenuate LPS-induced ARDS/ALI.

6.
Neuroscience Bulletin ; (6): 183-194, 2008.
Artículo en Inglés | WPRIM | ID: wpr-264678

RESUMEN

There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.


Asunto(s)
Animales , Humanos , Encéfalo , Metabolismo , Cuerpos de Inclusión , Metabolismo , Patología , Proteínas del Tejido Nervioso , Metabolismo , Enfermedades Neurodegenerativas , Metabolismo , Complejo de la Endopetidasa Proteasomal , Metabolismo , Pliegue de Proteína , Transducción de Señal , Fisiología , Ubiquitina-Proteína Ligasas , Metabolismo , Ubiquitinación , Fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA