Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : 179-184, 1999.
Artículo en Inglés | WPRIM | ID: wpr-158708

RESUMEN

Heart disease is one of the major cause of death in diabetic patients, but the thogenesis of diabetic cardio-myopathy remains unclear. In this experiment, to sess the significance of G protein signaling pathways in the pathogenesis of abetic cardiomyopathy, we analyzed the expression of G proteins and the tivities of second messenger dependent protein kinases: cAMP-dependent protein nase (PKA), DAG-mediated protein kinase C (PKC), and calmodulin dependent otein kinase II (CaM kinase II) in the streptozotocin induced diabetic rat art. The expression of Galphaq was increased by slightly over 10% (P<0.05) in abetic rat heart, while Galphas, Galphai, and Gbeta remained unchanged. The A activity in the heart did not change significantly but increased by 27%<0.01) in the liver. Insulin treatment did not restore the increased activity the liver. Total PKC activity in the heart was increased by 56% (P<0.01), and sulin treatment did not restore such increase. The CaM kinase II activity in e heart remained at the same level but was slightly increased in the liver 4% increase, P<0.05). These findings of increased expression of Galphaq in the reptozotocin-diabetic rat heart that are reflected by the increased level of C activity and insensitivity to insulin demonstrate that alteration of Galphaq y underlie, at least partly, the cardiac dysfunction that is associated with abetes. Copyright 2000 Academic Press.


Asunto(s)
Masculino , Ratas , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Proteínas de Unión al GTP/metabolismo , Insulina/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Estreptozocina
2.
Experimental & Molecular Medicine ; : 235-239, 1998.
Artículo en Inglés | WPRIM | ID: wpr-159764

RESUMEN

Heterotrimeric guanine nucleotide binding regulatory proteins (G proteins) transduce extracellular signals into intracellular signals by coupling receptors and effectors. Because most of the G protein-coupled receptors are integral proteins, the G proteins need to have a membrane binding capacity to receive signals from the receptors. The alpha subunit of G protein binds tightly to the cytoplasmic face of the plasma membrane without any membrane spanning domain. Fatty acylation of G alpha with myristic acid or palmitic acid, in addition to the beta gamma subunits, plays an important role in anchoring the G alpha subunit. The reversible and dynamic palmitoylation of the alpha subunit of stimulatory G protein (Gs alpha) has been suggested as essential for its membrane attachment. However, in our previous experiments, Gs alpha deleted in the amino terminus containing palmitoylation site, retained its binding capacity when expressed in COS cells. Thus, to evaluate the role of palmitoylation in Gs alpha membrane binding, we constructed and expressed non-palmitoylated mutants of Gs alpha and analyzed their subcellular distributions in COS-1 cells. We found that non-palmitoylated mutants of Gs alpha, C3S- and G2A/C3S Gs alpha, retained their membrane binding capacities in COS-1 cells, demonstrating that palmitoylation is not essential for membrane binding of Gs alpha in COS-1 cells. We also found that the palmitoylation did not change significantly the distribution of Gs alpha in Triton X-114 partition. These results suggest that the palmitoylation of Gs alpha may produce different effects on membrane binding depending on cell types.


Asunto(s)
Ratas , Animales , Western Blotting , Células COS , Membrana Celular/metabolismo , Detergentes/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Immunoblotting , Isoproterenol/metabolismo , Mutagénesis , Palmitatos/metabolismo , Polietilenglicoles/farmacología , Transfección
3.
Experimental & Molecular Medicine ; : 133-137, 1997.
Artículo en Inglés | WPRIM | ID: wpr-123617

RESUMEN

To investigate the interaction of stimulatory GTP binding protein (G(s)) pathways with others, we overexpressed wild type alpha subunit of G(s) (G(s) alpha), constitutively activated R201E G(s) alpha, and dominant negative G226A G(s) alpha in COS-1 cells by transfection with DEAE-dextran, respectively, The expression of various G proteins in the transfected cells was analyzed after 72 h by quantitative Western blots, and cAMP production by stimulation with isoproterenol and forskolin was quantitated using cAMP binding proteins, The expression of Gs alpha increased about 5-fold in the transfected cells, with concomitant increase in the small forms. However, there was no significant alteration the in the level of the alpha subunit of inhibitory G protein (G(i)) and G(q), and the beta subunits of G proteins. The cAMP level without stimulation increased in the cells transfected with G(s) alpha regardless to the type of mutation, Treatment with either isoproterenol or forskolin resulted in comparable increase of the cAMP level in all the transfected cells, though the ratio to its respective basal level was smaller in the G(s) alpha-transfected cells, From this experiment, we found that the expression of the other G proteins and the signaling pathway producing cAMP did not change significantly by transiently expressing wild type, constitutively activated type, and dominant negative type of G(s) alpha. Analysis of the effects of long-term expression of Gs alpha would contribute to better understanding on how the G(s) alpha signaling system interacts with other signaling pathways and how it adapts to the changed environments.


Asunto(s)
Animales , Western Blotting , Proteínas Portadoras , Colforsina , Células COS , AMP Cíclico , DEAE Dextrano , Proteínas de Unión al GTP , Isoproterenol , Ingeniería de Proteínas , Proteínas Recombinantes , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA