Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
China Pharmacy ; (12): 29-33, 2023.
Artículo en Chino | WPRIM | ID: wpr-953713

RESUMEN

OBJECTIVE To provide reference for clarifying improvement effects of Anemarrhena asphodeloides on sepsis- induced myocardial injury and potential material basis. METHODS Water extract of A. asphodeloides was extracted by thermal reflux method. Total xanthone and total saponins in A. asphodeloides were separated by macroporous adsorption resin. The mice model of sepsis-induced myocardial injury was established by intraperitoneal injection of lipopolysaccharide. The effects of the location of three extraction fractions and the monomers of A. asphodeloides as mangiferin, timosaponin AⅢ and timosaponin BⅡ on the survival rate of the model mice were explored. HE staining was used to observe the effects of mangiferin, timosaponin AⅢ and timosaponin BⅡ on myocardial morphology in model mice. The effects of mangiferin on mRNA expressions of inflammatory cytokines [interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α)] and the level of reactive oxygen species (ROS) in myocardial tissue of model mice were detected. RESULTS Compared with the model group, the survival rate of mice in the intervention group of total xanthone, total saponins and water extract was increased to different extents, especially total xanthone fraction. Mangiferin, timosaponin AⅢ and timosaponin BⅡcould improve the degree of myocardial cell swelling and muscle bundle arrangement disorder in model mice, especially mangiferin. Compared with model group, mRNA expressions of IL-6, IL- 1β and TNF- α, ROS level in myocardium of mice after mangiferin intervention were decreased to different extents. CONCLUSIONS The different extraction fractions of A. asphodeloides can improve survival rate of mice with sepsis-induced myocardial injury, especially total xanthone fraction. Mangiferin is the best among the three monomers of A. asphodeloides to improve sepsis-induced myocardial injury, which may play a role in anti-sepsis myocardial injury by anti-inflammation and antioxidantion.

2.
China Pharmacy ; (12): 146-152, 2022.
Artículo en Chino | WPRIM | ID: wpr-913103

RESUMEN

OBJECTIVE To establish the fingerprints of c ultivated and wild Anemarrhena asphodeloides,and to identify their differential components. METHODS Using an evaporative light-scattering detector , the high performance liquid chromatography combined with Similarity Evaluation System of TCM Chromatographic Fingerprint (2012 edition) were used to establish fingerprints of 14 batches of cultivated A. asphodeloides and 14 batches of wild medicinal materials ,and evaluate their similarity. The common peaks were identified by comparison with the chromatogram of the mixed control. At the same time ,the contents of components corresponding to common peaks in cultivated and wild A. asphodeloides were determined. The principal component analysis and orthogonal partial least squares discrimination analysis were adopted to identify differential components of them ,and compare the contents of them. RESULTS Among 28 batches of A. asphodeloides ,10 common peaks were found ,i.e. neomangiferin(peak 1),mangiferin(peak 2),isomangiferin(peak 3),timosaponin B Ⅱ(peak 7),timosaponin B Ⅲ(peak 8), timosaponin Ⅰ(peak 9),timosaponin A Ⅲ(peak 10). The similarities of fingerprints of samples with control fingerprint were no less than 0.963. The average total contents of seven components in cultivated and wild A. asphodeloides were 74.18 and 84.72 mg/g, respectively;there was statistical significance (P<0.05). The cultivated and wild A. asphodeloides could be divided into two categories. The differential components were neomangiferin ,mangiferin,timosaponin B Ⅱ and timosaponin A Ⅲ(VIP values were all higher than 1). The content of neomangiferin in cultivated products was significantly higher than that in wild products (P< 0.05),and the contents of mangiferin ,timosaponin B Ⅱ and ti mosaponin A Ⅲ were significantly lower than those in wild products (P<0.05). CONCLUSIONS Fingerprint of A. asphodeloides is established ,and differential components of cultivated and wild A. asphodeloides are identified primarily.

3.
China Pharmacy ; (12): 2706-2712, 2020.
Artículo en Chino | WPRIM | ID: wpr-829970

RESUMEN

OBJECTIVE:To establish the fingerprint of ethanol extract and acetone extract from Anemarrhena asphodeloides and its different processed products ,and to investigate the spectrum-effect relationship between the fingerprint and the antioxidant activity. METHODS :HPLC method and HPLC-ELSD method were adopted. The determination was performed on Thermo BDS Hypersil C 18 column with mobile phase consisted of acetonitrile- 0.2% acetic acid at the flow rate of 1.0 mL/min. The column temperature was 30 ℃,and the detection wavelength was set at 258 nm. The sample size was 10 μL. The determination was performed on XDB-C 18 columnwith mobile phase consisted of acetonitrile-0.1% acetic acid (gradient elution )at the flow rate of 0.9 mL/min. The column temperature was 30 ℃ . The temperature of atomizer was 40 ℃ and the flow rare of N 2 was 1.6 mL/min. The sample size was 10 μL. Using mangiferin and timosaponin B Ⅱ as reference ,Fingerprint Similarity Eva- com luation System of TCM Chromatogram (2004A edition )was adopted to draw the fingerprint of ethanol extract and acetoneextract from 20 batches of A. asphodeloides and its different processed products to confirm common peaks. Using scave nging rate of 1,1-diphenyl-2-trinitrophenylhydrazine(DPPH)radical as index,antioxidant activities of ethanol extract and acetone extract from 20 batches of A. asphodeloides and its processed products were investigated. Using scavenging rate of DPPH radical as dependent variable ,common peak area as independent variable ,PLSR was used to analyze the spectrum-effect relationship of ethanol extract and acetone extract from A. asphodeloides with antioxidantion activity. RESULTS :Eight peaks (M1-M8)were identified in the fingerprints of ethanol extracts from 20 batches of processed A. asphodeloides . Mangiferin (chromatogram peak M 7)was identified with similarity of 0.389-1.000;seven comon peaks (S1-S7)and timosaponin B Ⅱ(peak S 5)were identified in the fingerprint of acetone extract ,and the similarity was 0.044-0.999. DPPH radical scavenging rate of ethanol extract from 20 batches of A. asphodeloides and its processed products was 21.23%- 81.39%,and A. asphodeloides was significantly lower than salt-processed A. asphodeloides with salt wine-processed A. asphodeloides (P<0.001);and that of acetone extract was 49.73%-83.78%,and A. asphodeloides was significantly higher than stir-baked A. asphodeloides with salt ,wine or fire (P<0.001). The standardized regression coefficients of peaks M 2-M7 in the spectrum of ethanol extract from A. asphodeloides were all greater than 0,which was positively correlated with antioxidant activity. Only the variable importance projection (VIP)value of peak M 7 was greater than 1,which had an important contribution. The standardized regression coefficients of peaks S 4-S7 in the acetone extract spectrum of A. asphodeloides were greater than 0,and were positively correlated with antioxidant activity. The order of VIP values was peak S 5>S6>S4,and the VIP values were all greater than 1. CONCLUSIONS:The fingerprint of the different processed products A. asphodeloides and its antioxidant activity spectral effect relationship were successfully established ;mangiferin(peak M 7)may be the main antioxidant substance of ethanol extract from A. asphodeloides . Timosaponin B Ⅱ(peak S 5),peak S 6 and peak S 4 may be the main antioxidant substance in acetone extract from A. asphodeloides .

4.
China Pharmacy ; (12): 2802-2807, 2019.
Artículo en Chino | WPRIM | ID: wpr-817524

RESUMEN

OBJECTIVE: To establish a method for simultaneous determination of spinosin and jujuboside A in the seads of Ziziphus jujuba, and to investigate its quality grading standard. METHODS: HPLC-ELSD method was adopted. The separation was carried out on Inertsil ODS-SP column with mobile phase consisted of acetonitrile-water (gradient elution) at the flow rate of 1.0 mL/min. The column temperature was 30 ℃, the temperature of drift tube was 90 ℃, the flow of carrier gas was 2.9 L/min and injection volume was 20 μL. The thickness, width, length and 100-grain quality of the medicinal materials were used as indicators to investigate the appearance traits. SPSS 22.0 software was used to analyze the correlation of the contents of spinosin and jujuboside A, its appearance traits with the quality constant of TCM, and establish a quality classification standard for the seads of Z. jujuba. RESULTS: The linear range of spinosin and jujuboside A were 1.03-6.18 μg/mL (r=0.999 7), 1.05-6.30 μg/mL (r=0.999 8); the limits of quantitation were 0.171, 0.174 μg/mL, respectively; the limits of detection were 0.052, 0.053 μg/mL, respectively. RSDs of precision, stability and reproducibility tests were all lower 2%. The recoveries were 99.01%-102.97% (RSD=1.39%, n=6), 97.94%-101.03% (RSD=1.13%, n=6), respectively. Correlation analysis results showed that the length, width, 100-grain quality spinosin content and jujuboside A content of the medicinal materials were positively correlated with the quality constant of TCM. The results of quality classification for 30 batches of medicinal materials showed that S1-S4 and S7-S12 were first-class products; S5, S6, S13-S17 and S20-S30 were second-class products; S18 and S19 were third-class products. CONCLUSIONS: Established content determination method is simple, precision, accurate and stable, and can be used for simultaneous determination of spinosin and jujuboside A in the seads of Z. jujuba. Established quality grading standard of the seads of Z. jujuba can be used to evaluate the quality.

5.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 418-424, 2008.
Artículo en Chino | WPRIM | ID: wpr-407254

RESUMEN

AIM: To evaluate the protective effect of luteolin on endothelial dysfunction induced by tert-butyl hydro-peroxide (t-BOOH). METHODS: We observed the effect of luteolin on t-BOOH-induced contractions in the aorta rings with or without endot helium, which were incubated with luteolin (10-6 to 10-4 mol/L) for 30 min before determining the concentration-response to t- BOOH. Cultured endothelial cell line (ECV304) was pretreated with different concentrations of luteolin (10-6 to 10-4 mol/L) for 30 min and then exposed to 10 -5 mol/L t-BOOH for 24 hours. Cell morphology was observed , and cell viability was determined by MTT assay. Meanwhile, RT-PCR was used to measure the expression of eNOS and COX-1. RESULTS: Increasing concentrations of t-BOOH produced concentration-dependent cont ractions in aorta rings isolated from rats, luteolin effectively attenuated the contraction in a concentration-dependent manner, and the relaxation response was greater in intact endothelium segments. In MTT and RT-PCR assays, luteolin effectively reduced the cytotoxicity of t-BOOH to endothelium cell and increased the expression of nitric oxide synthase (eNOS) mRNA, which was greatly down-regulated by t-BOOH. CONCLUSION: Luteolin effectively protects the endothelium from the impairment of oxidative stress, and the protection could be related to its negative modulation towards t-BOOH-induced contractions in the aorta.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA