Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Mem. Inst. Oswaldo Cruz ; 117: e210331, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1386364

RESUMEN

BACKGROUND One of the most controversial factors about malaria parasite culture is the gaseous composition used. The most commonly used one consists of a mixture poor in O2 and rich in CO2. OBJECTIVES The present study aimed to share standard methods from our research group simplifying Plasmodium falciparum cultures by employing atmospheric air (ATM) and reusable glass bottles under agitation. METHODS Here, it was compared the parasite viability, free oxygen in media, and drug sensitivity between different strains and isolates maintained for long periods under ATM or classic conditions. FINDINGS The oxygen concentration in media under ATM was slightly superior to that observed in human blood and the media under the classic gaseous mixture. However, ATM or the use of glass bottles did not affect parasitic proliferation after several years of culture. Noticeably, the introduction of ATM altered reversibly the efficacy of several antimalarials. This influence was different between the strains and isolate. CONCLUSIONS ATM conditions and shaken flasks could be used as a standard method condition for culture manutention since they do not differ greatly from classical 5% O2 gas mixtures in terms of parasite proliferation and do not impose non-reversible changes to P. falciparum physiology.

2.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 134-141, Aug. 2011. ilus
Artículo en Inglés | LILACS | ID: lil-597255

RESUMEN

The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.


Asunto(s)
Humanos , Eritrocitos , Plasmodium falciparum , Prenilación de Proteína/fisiología , Terpenos , Carotenoides/biosíntesis , Dolicoles/biosíntesis , Plasmodium falciparum/crecimiento & desarrollo , Ubiquinona/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA