Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Mem. Inst. Oswaldo Cruz ; 115: e200207, 2020. tab, graf
Artículo en Inglés | LILACS, SES-SP | ID: biblio-1135237

RESUMEN

BACKGROUND Since the World Health Organization (WHO) declared Coronavirus disease 2019 (COVID-19) to be a pandemic infection, important severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural proteins (nsp) have been analysed as promising targets in virtual screening approaches. Among these proteins, 3-chymotrypsin-like cysteine protease (3CLpro), also named main protease, and the RNA-dependent RNA polymerase (RdRp), have been identified as fundamental targets due to its importance in the viral replication stages. OBJECTIVES To investigate, in silico, two of the most abundant flavonoid glycosides from Dysphania ambrosioides; a medicinal plant found in many regions of the world, along with some of the putative derivatives of these flavonoid glycosides in the human organism as potential inhibitors of the SARS-CoV-2 3CLpro and RdRp. METHODS Using a molecular docking approach, the interactions and the binding affinity with SARS-CoV-2 3CLpro and RdRp were predicted for quercetin-3-O-rutinoside (rutin), kaempferol-3-O-rutinoside (nicotiflorin) and some of their glucuronide and sulfate derivatives. FINDINGS Docking analysis, based on the crystal structure of 3CLpro and RdRp, indicated rutin, nicotiflorin, and their glucuronide and sulfate derivatives as potential inhibitors for both proteins. Also, the importance of the hydrogen bond and π-based interactions was evidenced for the presumed active sites. MAIN CONCLUSIONS Overall, these results suggest that both flavonoid glycosides and their putative human metabolites can play a key role as inhibitors of the SARS-CoV-2 3CLpro and RdRp. Obviously, further researches, mainly in vitro and in vivo experiments, are necessary to certify the docking results reported here, as well as the adequate application of these substances. Furthermore, it is necessary to investigate the risks of D. ambrosioides as a phytomedicine for use against COVID-19.


Asunto(s)
Humanos , Flavonoides/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Betacoronavirus/efectos de los fármacos , Glicósidos/farmacología , Neumonía Viral , Cisteína Endopeptidasas , Infecciones por Coronavirus , Pandemias , Simulación del Acoplamiento Molecular , Proteasas 3C de Coronavirus , SARS-CoV-2 , COVID-19
2.
Rev. bras. farmacogn ; 25(1): 11-15, Jan-Feb/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-746052

RESUMEN

Polycarpol, a recurrent lanostane-type triterpene in Annonaceae family, was confirmed by thin layer chromatography and mass spectrometry analysis in the aerial parts (twigs and trunk barks) of Unonopsis duckei R.E. Fr., U. floribunda Diels, U. rufescens (Baill.) R.E. Fr., U. stipitata Diels, Onychopetalum amazonicum R.E. Fr. and Bocageopsis pleiosperma Maas. Its chemotaxonomic significance was discussed for these three genera, as well for the Annonaceae family. In addition, the antimicrobial activity against several strains of microorganisms was evaluated for the first time for this compound, being observed significant antibacterial activity against Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 1228) and Escherichia coli (ATCC 10538 and ATCC 10799) with minimal inhibitory concentration values between 25 and 50 μg ml−1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA