Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Genomics & Informatics ; : e44-2021.
Artículo en Inglés | WPRIM | ID: wpr-914324

RESUMEN

Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.

2.
Blood Research ; : 252-258, 2021.
Artículo en Inglés | WPRIM | ID: wpr-913723

RESUMEN

Background@#Hemophilia B (HB) is an X-linked bleeding disorder resulting from coagulation factor IX defects. Over 3,000 pathogenic, HB-associated mutations in the F9 gene have been identified. We aimed to investigate the role of F9 variants in 150 HB patients using sequencing technology. @*Methods@#F9 gene sequences were amplified from peripheral blood-derived DNA and sequenced on an Applied Biosystems (ABI) 3500 Sanger sequencing platform. Functional and structural predictions of mutant FIX were analyzed. @*Results@#Among 150 HB patients, 102 (68%), 30 (20%), and 18 (12%) suffered from severe, moderate, and mild HB, respectively. Genetic analysis identified 16 mutations, including 3 novel mutations. Nine mutations (7 missense and 2 stop-gain) were found to be pathogenic.Only 3 mutations (c.127C>T, c.470G>A, and c.1070G>A) were associated with different severities. While 2 mutations were associated with mild HB cases (c.304C>T and c.580A>G), 2 (c.195G>A and c.1385A>G) and 3 mutations (c.223C>T, c.1187G>A, and c.1232G>A) resulted in moderate and severe disease, respectively. Additionally, 1 mutation each was associated with mild-moderate (c.*1110A>G) and mild-severe HB disease (c.197A>T), 4 mutations were associated with moderate-severe HB cases (c.314A>G, c.198A>T, c.676C>T, and c.1094C>A). FIX concentrations were lower in the mutated group (5.5±2.5% vs. 8.0±2.5%). Novel p.E66D and p.S365 mutations were predicted to be pathogenic based on changes in FIX structure and function. @*Conclusion@#Novel single nucleotide polymorphisms (SNPs) largely contributed to the pathogenesis of HB. Our study strongly suggests that population-based genetic screening will be particularly helpful to identify risk prediction and carrier detection tools for Indian HB patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA