RESUMEN
Circadian rhythm is a 24-hour cycle of behavioral and physiological changes. Disrupted sleep-wake patterns and circadian dysfunction are common in patients of Alzheimer Disease (AD) and are closely related with neuroinflammation. However, it is not well known how circadian rhythm of immune cells is altered during the progress of AD. Previously, we found presenilin 2 (Psen2) N141I mutation, one of familial AD (FAD) risk genes, induces hyperimmunity through the epigenetic repression of REV-ERBα expression in microglia and bone marrow-derived macrophage (BMDM) cells. Here, we investigated whether repression of REV-ERBα is associated with dysfunction of immune cell-endogenous or central circadian rhythm by analyses of clock genes expression and cytokine secretion, bioluminescence recording of rhythmic PER2::LUC expression, and monitoring of animal behavioral rhythm. Psen2 N141I mutation down-regulated REV-ERBα and induced selective over-production of IL-6 (a well-known clock-dependent cytokine) following the treatment of toll-like receptor (TLR) ligands in microglia, astrocytes, and BMDM. Psen2 N141I mutation also lowered amplitude of intrinsic daily oscillation in these immune cells representatives of brain and periphery. Of interest, however, the period of daily rhythm remained intact in immune cells. Furthermore, analyses of the central clock and animal behavioral rhythms revealed that central clock remained normal without down-regulation of REV-ERBα. These results suggest that Psen2 N141I mutation induces hyperimmunity mainly through the suppression of REV-ERBα in immune cells, which have lowered amplitude but normal period of rhythmic oscillation. Furthermore, our data reveal that central circadian clock is not affected by Psen2 N141I mutation.
RESUMEN
Intermittent fasting has become an increasingly popular strategy in losing weight and associated reduction in obesity-related medical complications. Overwhelming studies support metabolic improvements from intermittent fasting in blood glucose levels, cardiac and brain function, and other health benefits, in addition to weight loss. However, concerns have also been raised on side effects including muscle loss, ketosis, and electrolyte imbalance. Of particular concern, the effect of intermittent fasting on hormonal circadian rhythms has received little attention. Given the known importance of circadian hormonal changes to normal physiology, potential detrimental effects by dysregulation of hormonal changes deserve careful discussions. In this review, we describe the changes in circadian rhythms of hormones caused by intermittent fasting. We covered major hormones commonly pathophysiologically involved in clinical endocrinology, including insulin, thyroid hormones, and glucocorticoids. Given that intermittent fasting could alter both the level and frequency of hormone secretion, decisions on practicing intermittent fasting should take more considerations on potential detrimental consequences versus beneficial effects pertaining to individual health conditions.
RESUMEN
Intermittent fasting has become an increasingly popular strategy in losing weight and associated reduction in obesity-related medical complications. Overwhelming studies support metabolic improvements from intermittent fasting in blood glucose levels, cardiac and brain function, and other health benefits, in addition to weight loss. However, concerns have also been raised on side effects including muscle loss, ketosis, and electrolyte imbalance. Of particular concern, the effect of intermittent fasting on hormonal circadian rhythms has received little attention. Given the known importance of circadian hormonal changes to normal physiology, potential detrimental effects by dysregulation of hormonal changes deserve careful discussions. In this review, we describe the changes in circadian rhythms of hormones caused by intermittent fasting. We covered major hormones commonly pathophysiologically involved in clinical endocrinology, including insulin, thyroid hormones, and glucocorticoids. Given that intermittent fasting could alter both the level and frequency of hormone secretion, decisions on practicing intermittent fasting should take more considerations on potential detrimental consequences versus beneficial effects pertaining to individual health conditions.
RESUMEN
BACKGROUND: In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions. METHODS: We examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2) gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC) knock-in mice using a real-time bioluminescence measurement system. RESULTS: Administration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms. CONCLUSION: These findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.
Asunto(s)
Animales , Ratones , Ritmo Circadiano , Sinapsis Eléctricas , Uniones Comunicantes , Hipotálamo , Mediciones Luminiscentes , Mamíferos , Mefloquina , Neuronas , Transición de Fase , Núcleo SupraquiasmáticoRESUMEN
Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In the present study, we demonstrate that Per2 promoter activity clearly oscillates in neonate and adult bladders cultured ex vivo from Per2::Luc knock-in mice. In subsequent experiments, we show that multiple local oscillators are operating in all the bladder tissues (detrusor, sphincter and urothelim) and the lumbar spinal cord (L4-5) but not in the pontine micturition center or the ventrolateral periaqueductal gray of the brain. Accordingly, the water intake and urine volume exhibited daily and circadian variations in young adult wild-type mice but not in Per1-/- Per2-/- mice, suggesting a functional clock-dependent nature of the micturition rhythm. Particularly in PDK mice, the water intake and urinary excretion displayed an arrhythmic pattern under constant darkness, and the amount of water consumed and excreted significantly increased compared with those of WT mice. These results suggest that local circadian clocks reside in three types of bladder tissue and the lumbar spinal cord and may have important roles in the circadian control of micturition function.
Asunto(s)
Animales , Ratones , Relojes Circadianos , Ingestión de Líquidos , Especificidad de Órganos , Sustancia Gris Periacueductal/metabolismo , Proteínas Circadianas Period/genética , Puente/metabolismo , Médula Espinal/metabolismo , Vejiga Urinaria/inervación , MicciónRESUMEN
As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and orchestrates numerous subsidiary local clocks in other regions of the brain and peripheral tissues. Regardless of their locations, these circadian clocks are cell-autonomous and self-sustainable, implicating rhythmic oscillations in a variety of biochemical and metabolic processes. A group of core clock genes provides interlocking molecular feedback loops that drive the circadian rhythm even at the single-cell level. In addition to the core transcription/translation feedback loops, post-translational modifications also contribute to the fine regulation of molecular circadian clocks. In this article, we briefly review the molecular mechanisms and post-translational modifications of mammalian circadian clock regulation. We also discuss the organization of and communication between central and peripheral circadian oscillators of the mammalian circadian clock.
Asunto(s)
Encéfalo , Relojes Circadianos , Ritmo Circadiano , Hipotálamo Anterior , Mamíferos , Procesamiento Proteico-Postraduccional , Núcleo SupraquiasmáticoRESUMEN
PURPOSE: This study was intended to investigate the migrating motor complex (MMC) changes after ileal bypass in ex-vivo mouse models. METHODS: Partial (side-to-side) and total bypass (occlusion of proximal part of bypassed loop) were performed on ileums of female Institute of Cancer Research mice. After 2 and 4 weeks, the bypassed segments were harvested and MMCs were recorded at 4 different sites ex-vivo. Amplitude, duration, interval, direction of propagation, and the area under the curve (AUC) of MMCs were measured and compared to those of the controls. RESULTS: In control mice (n = 7), most MMCs propagated aborally (91.1%). After 2 weeks of partial bypass (n = 4), there was a significant decrease in both amplitude and AUC, and orally-propagating MMCs increased significantly (45%, P = 0.002). Bidirectional MMCs (originating in the bypassed loop and propagating in both directions) were also observed (10%). The amplitude of the MMCs remained decreased at 4 weeks after partial bypass (n = 4), and neither the AUC nor the direction of propagation showed significant changes compared to 2 weeks. Similarly, in the total bypass model, both the amplitude and AUC of the MMCs decreased significantly compared to controls. In contrast to partial bypass, 95% of the MMCs within the bypassed loop propagated aborally after 2 weeks (n = 6), which was similar to the control state. After 4 weeks (n = 5), however, MMCs either lost their temporal relationship or completely disappeared. CONCLUSION: The changes in propagation direction of the MMCs in the partially bypassed loop may contribute to stagnation of bowel contents and the development of blind loop syndrome.
Asunto(s)
Animales , Femenino , Humanos , Ratones , Área Bajo la Curva , Síndrome del Asa Ciega , Íleon , Derivación Yeyunoileal , Complejo Mioeléctrico MigratorioRESUMEN
No abstract available.
Asunto(s)
Femenino , Humanos , Hibridación in Situ , Infecciones por Papillomavirus , Reacción en Cadena de la PolimerasaRESUMEN
A rare case of spinal epidural granulocytic sarcoma (GS) preceding acute myelogenous leukemia is described. A 10-year-old boy presented with lower leg weakness. The initial diagnosis was a histiocytic lymphoma, and he was treated accordingly. No evidence of bone marrow involvement was found at that time. The correct diagnosis of epidural GS was made possible in retrospect by using immunoperoxidase staining for lysozyme fourteen months later when the patient showed the full-blown features of leukemia. This rare tumor should be considered in the differential diagnosis of an epidural mass with cord compression in patients with or even without acute leukemia, because early diagnosis followed by appropriate combined chemotherapy and radiation may obviate surgical intervention and eventually prevent leukemic transformation.