Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
J Environ Biol ; 2013 Apr; 34(2suppl): 353-358
Artículo en Inglés | IMSEAR | ID: sea-148538

RESUMEN

Mycotoxins are considered as the most hazardous fungal metabolites for human, animals and plant health. Recently, more attention has been paid on the occurrence of this group of fungi in different water sources throughout the globe. In this study, Aspergillus parasiticus ATCC strain was used as representative strain producing aflatoxins in drinking water. This study aimed to investigate the activation of fungi in drinking water and their ability to produce aflatoxins (B1, B2, G1, and G2) in water under different ratios of C:N using different concentrations of total organic carbon (TOC) and total nitrogen (TN). Glucose and ammonium sulphate were used for changing the levels of TOC and TN in the selected water media. Similarly, the effects of different water pH levels from 4.5 to 8.2 on the growth of this group of fungi and aflatoxins production were also investigated. The results indicate that the growth of fungi was highest, at C:N ratio of 1:1 as compared to other selected ratios. Furthermore, the findings indicate that the pH levels 5.5-6.5 showed best growth of fungi as compared to other pH levels. Aflatoxin concentrations were measured in the water samples using HPLC technique, but selected fungi were not able to produce aflatoxins in water at applied concentrations of TOC and TN mimicking the ratios and concentrations present in the natural aquatic environment.

2.
J Environ Biol ; 2013 Apr; 34(2suppl): 325-330
Artículo en Inglés | IMSEAR | ID: sea-148534

RESUMEN

Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg l-1 along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight (<6 kDa) decreased and large molecular weight (>20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA