Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 609-620, 2021.
Artículo en Chino | WPRIM | ID: wpr-888219

RESUMEN

Polymeric hydrogels have been widely researched as drug delivery systems, wound dressings and tissue engineering scaffolds due to their unique properties such as good biocompatibility, shaping ability and similar properties to extracellular matrix. However, further development of conventional hydrogels for biomedical applications is still limited by their poor mechanical properties and self-healing properties. Currently, nanocomposite hydrogels with excellent properties and customized functions can be obtained by introducing nanoparticles into their network, and different types of nanoparticles, including carbon-based, polymer-based, inorganic-based and metal-based nanoparticle, are commonly used. Nanocomposite hydrogels incorporated with polymeric micelles can not only enhance the mechanical properties, self-healing properties and chemical properties of hydrogels, but also improve the


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Micelas , Nanocompuestos , Polímeros
2.
Journal of Southern Medical University ; (12): 988-994, 2020.
Artículo en Chino | WPRIM | ID: wpr-828925

RESUMEN

OBJECTIVE@#To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.@*METHODS@#Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.@*RESULTS@#Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.@*CONCLUSIONS@#hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Asunto(s)
Animales , Humanos , Ratones , Transición Epitelial-Mesenquimal , Exosomas , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Factor de Crecimiento Transformador beta1 , Cordón Umbilical
3.
Journal of Zhejiang University. Medical sciences ; (6): 988-994, 2020.
Artículo en Chino | WPRIM | ID: wpr-828506

RESUMEN

OBJECTIVE@#To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.@*METHODS@#Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.@*RESULTS@#Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.@*CONCLUSIONS@#hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Asunto(s)
Animales , Humanos , Ratones , Transición Epitelial-Mesenquimal , Exosomas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Mesenquimatosas , Biología Celular , Fibrosis Pulmonar , Terapéutica , Factor de Crecimiento Transformador beta1 , Genética , Cordón Umbilical , Biología Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA