Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
Diabetes & Metabolism Journal ; : 908-918, 2020.
Artículo en Inglés | WPRIM | ID: wpr-898037

RESUMEN

BackgroundVoglibose, an α-glucosidase inhibitor, inhibits breakdown of complex carbohydrates into simple sugar units in intestine. Studies showed that voglibose metabolism in the liver might be negligible due to its poor intestinal absorption. Numerous microorganisms live in intestine and have several roles in metabolism and detoxification of various xenobiotics. Due to the limited information, the possible metabolism of voglibose by intestinal microbiota was investigated in vitro and in vivo.MethodsFor the in vitro study, different concentrations of voglibose were incubated with intestinal contents, prepared from both vehicle- and antibiotics-treated mice, to determine the decreased amount of voglibose over time by using liquid chromatography-mass spectrometry. Similarly, in vivo pharmacodynamic effect of voglibose was determined following the administration of voglibose and starch in vehicle- and antibiotic-pretreated non-diabetic and diabetic mice, by measuring the modulatory effects of voglibose on blood glucose levels.ResultsThe in vitro results indicated that the remaining voglibose could be significantly decreased when incubated with the intestinal contents from normal mice compared to those from antibiotic-treated mice, which had less enzyme activities. The in vivo results showed that the antibiotic pretreatment resulted in reduced metabolism of voglibose. This significantly lowered blood glucose levels in antibiotic-pretreated mice compared to the control animals.ConclusionThe present results indicate that voglibose would be metabolized by the intestinal microbiota, and that this metabolism might be pharmacodynamically critical in lowering blood glucose levels in mice.

2.
Diabetes & Metabolism Journal ; : 908-918, 2020.
Artículo en Inglés | WPRIM | ID: wpr-890333

RESUMEN

BackgroundVoglibose, an α-glucosidase inhibitor, inhibits breakdown of complex carbohydrates into simple sugar units in intestine. Studies showed that voglibose metabolism in the liver might be negligible due to its poor intestinal absorption. Numerous microorganisms live in intestine and have several roles in metabolism and detoxification of various xenobiotics. Due to the limited information, the possible metabolism of voglibose by intestinal microbiota was investigated in vitro and in vivo.MethodsFor the in vitro study, different concentrations of voglibose were incubated with intestinal contents, prepared from both vehicle- and antibiotics-treated mice, to determine the decreased amount of voglibose over time by using liquid chromatography-mass spectrometry. Similarly, in vivo pharmacodynamic effect of voglibose was determined following the administration of voglibose and starch in vehicle- and antibiotic-pretreated non-diabetic and diabetic mice, by measuring the modulatory effects of voglibose on blood glucose levels.ResultsThe in vitro results indicated that the remaining voglibose could be significantly decreased when incubated with the intestinal contents from normal mice compared to those from antibiotic-treated mice, which had less enzyme activities. The in vivo results showed that the antibiotic pretreatment resulted in reduced metabolism of voglibose. This significantly lowered blood glucose levels in antibiotic-pretreated mice compared to the control animals.ConclusionThe present results indicate that voglibose would be metabolized by the intestinal microbiota, and that this metabolism might be pharmacodynamically critical in lowering blood glucose levels in mice.

3.
Biomolecules & Therapeutics ; : 302-310, 2020.
Artículo | WPRIM | ID: wpr-830932

RESUMEN

Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.

4.
Biomolecules & Therapeutics ; : 446-452, 2016.
Artículo en Inglés | WPRIM | ID: wpr-71444

RESUMEN

Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.


Asunto(s)
Animales , Humanos , Masculino , Ratas , Disponibilidad Biológica , Cafeína , Citocromo P-450 CYP1A1 , Interacciones Farmacológicas , Miel , Técnicas In Vitro , Metabolismo , Microsomas Hepáticos , Farmacocinética , Plasma , Própolis , Ratas Sprague-Dawley , Teobromina
5.
Biomolecules & Therapeutics ; : 201-206, 2015.
Artículo en Inglés | WPRIM | ID: wpr-55787

RESUMEN

Scutellaria baicalensis is one of the most widely used herbal medicines in East Asia. Because baicalein and baicalin are major components of this herb, it is important to understand the effects of these compounds on drug metabolizing enzymes, such as cytochrome P450 (CYP), for evaluating herb-drug interaction. The effects of baicalin and baicalein on activities of ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), benzyloxyresorufin O-debenzylase (BROD), p-nitrophenol hydroxylase and erythromycin N-demethylase were assessed in rat liver microsomes in the present study. In addition, the pharmacokinetics of caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) in baicalin-treated rats were compared with untreated control. As results, EROD, MROD and BROD activities were inhibited by both baicalin and baicalein. However, there were no significant differences in the pharmacokinetic parameters of oral caffeine and its three metabolites between control and baicalin-treated rats. When the plasma concentration of baicalin was determined, the maximum concentration of baicalin was below the estimated IC50 values observed in vitro. In conclusion, baicalin had no effects on the pharmacokinetics of caffeine and its metabolites in vivo, following single oral administration in rats.


Asunto(s)
Animales , Ratas , Administración Oral , Cafeína , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2B1 , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Asia Oriental , Interacciones de Hierba-Droga , Concentración 50 Inhibidora , Microsomas Hepáticos , Farmacocinética , Plasma , Scutellaria baicalensis , Teobromina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA