Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1569552

RESUMEN

ABSTRACT Neonatal sepsis leads to severe morbidity and occasionally death among neonates within the first week following birth, particularly in low- and middle-income countries. Empirical therapy includes antibiotics recommended by WHO. However, these have been ineffective against antimicrobial multidrug-resistant bacterial strains such as Klebsiella spp, Escherichia coli, and Staphylococcus aureus species. To counter this problem, new molecules and alternative sources of compounds with antibacterial activity are sought as options. Actinobacteria, particularly pathogenic strains, have revealed a biotechnological potential still underexplored. This study aimed to determine the presence of biosynthetic gene clusters and the antimicrobial activity of actinobacterial strains isolated from clinical cases against multidrug-resistant bacteria implicated in neonatal sepsis. In total, 15 strains isolated from clinical cases of actinomycetoma were used. PCR screening for the PKS-I, PKS-II, NRPS-I, and NRPS-II biosynthetic systems determined their secondary metabolite-producing potential. The strains were subsequently assayed for antimicrobial activity by the perpendicular cross streak method against Escherichia fergusonii Sec 23, Klebsiella pneumoniae subsp. pneumoniae H1064, Klebsiella variicola H776, Klebsiella oxytoca H793, and Klebsiella pneumoniae subsp. ozaenae H7595, previously classified as multidrug-resistant. Finally, the strains were identified by 16S rRNA gene sequence analysis. It was found that 100% of the actinobacteria had biosynthetic systems. The most frequent biosynthetic system was NRPS-I (100%), and the most frequent combination was NRPS-I and PKS-II (27%). All 15 strains showed antimicrobial activity. The strain with the highest antimicrobial activity was Streptomyces albus 94.1572, as it inhibited the growth of the five multidrug-resistant bacteria evaluated.

2.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1431359

RESUMEN

ABSTRACT Mycetoma is a neglected tropical disease (NTD) declared by the World Health Organization (WHO) in 2016. It is characterized by the progressive growth of nodules and granulomatous lesions on the legs, arms, and trunk. It is potentially disfiguring and causes disability or amputations in working-age people from marginalized areas. The causative agents can be fungi (eumycetoma) or actinobacteria (actinomycetoma), the latter being the most common in America and Asia. Nocardia brasiliensis is the most important causal agent of actinomycetoma in the Americas. Taxonomic problems have been reported when identifying this species, so this study aimed to detect the 16S rRNA gene variations in N. brasiliensis strains using an in silico enzymatic restriction technique. The study included strains from clinical cases of actinomycetoma in Mexico, isolated from humans and previously identified as N. brasiliensis by traditional methods. The strains were characterized microscopically and macroscopically, then subjected to DNA extraction and amplification of the 16S rRNA gene by PCR. The amplification products were sequenced, and consensus sequences were constructed and used for genetic identification and in silico restriction enzyme analysis with the New England BioLabs® NEBcutter program. All study strains were molecularly identified as N. brasiliensis; however, in silico restriction analysis detected a diversity in the restriction patterns that were finally grouped and subclassified into 7 ribotypes. This finding confirms the existence of subgroups within N. brasiliensis. The results support the need to consider N. brasiliensis as a complex species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA