RESUMEN
Dermal fibroblasts play essential roles in wound healing. However, they lose their normal regenerative functions under certain pathologic conditions such as in chronic diabetic wounds. Here, we show that substance P (SP) rescues the malfunctions of dermal fibroblasts in diabetes. SP increased the proliferation of diabetic dermal fibroblasts dose-dependently, although the effect was lower compared to the SP-stimulated proliferation of normal dermal fibroblasts. In contrast to normal dermal fibroblasts, SP increased the expression level of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) in diabetic dermal fibroblast hence, rescuing their angiogenic potential. The cellular characteristics of diabetic dermal fibroblasts modulated by SP would be able to accelerate the wound healing process through faster wound contraction and improved angiogenesis in diabetic chronic wounds. Moreover, SP pretreatment into dermal fibroblasts isolated from diabetic patients would be a promising strategy to develop autologous cell therapy for treating diabetic chronic wounds.
Asunto(s)
Humanos , Tratamiento Basado en Trasplante de Células y Tejidos , Fibroblastos , Sustancia P , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas , Heridas y LesionesRESUMEN
Impaired angiogenesis is a common pathological characteristic of chronic wounds. Therefore, the regulation of angiogenesis is important for proper tissue repair. It was reported that substance P (SP) accelerates wound healing in a skin injury model. SP is degraded by neutral endopeptidase (NEP). Our study shows that systemic co-treatment of SP and thiorphan, an inhibitor of NEP synergically increased the number of α-smooth muscle actin positive-blood vessels in skin wounds. However, there was no synergic improvement in wound contraction and extracellular matrix deposition. Therefore, inhibition of endogenous NEP activity by thiorphan treatment might modulate the effects of SP treatment specifically on accelerating angiogenesis during wound healing. However, the molecular mechanism(s) of the synergic increase in angiogenesis by SP and thiorphan treatment is still unknown.