RESUMEN
Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4(+) SSEA-1(+)Sca-1(+)Lin-CD45(-) very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (~3-6 microm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells.
Asunto(s)
Adulto , Humanos , Envejecimiento , Antígeno Lewis X , Médula Ósea , Metilación de ADN , Estructuras Embrionarias , Impresión Genómica , Cuerpo Humano , Células Madre Pluripotentes , Medicina Regenerativa , Rejuvenecimiento , Células MadreRESUMEN
As the theory of stem cell plasticity was first proposed, we have explored an alternative hypothesis for this phenomenon: namely that adult bone marrow (BM) and umbilical cord blood (UCB) contain more developmentally primitive cells than hematopoietic stem cells (HSCs). In support of this notion, using multiparameter sorting we were able to isolate small Sca1+Lin-CD45- cells and CD133+Lin-CD45- cells from murine BM and human UCB, respectively, which were further enriched for the detection of various early developmental markers such as the SSEA antigen on the surface and the Oct4 and Nanog transcription factors in the nucleus. Similar populations of cells have been found in various organs by our team and others, including the heart, brain and gonads. Owing to their primitive cellular features, such as the high nuclear/cytoplasm ratio and the presence of euchromatin, they are called very small embryonic-like stem cells (VSELs). In the appropriate in vivo models, VSELs differentiate into long-term repopulating HSCs, mesenchymal stem cells (MSCs), lung epithelial cells, cardiomyocytes and gametes. In this review, we discuss the most recent data from our laboratory and other groups regarding the optimal isolation procedures and describe the updated molecular characteristics of VSELs.