Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Mem. Inst. Oswaldo Cruz ; 109(3): 307-314, 06/2014. tab
Artículo en Inglés | LILACS | ID: lil-711730

RESUMEN

Drug-resistant tuberculosis (TB) threatens global TB control and is a major public health concern in several countries. We therefore developed a multiplex assay (LINE-TB/MDR) that is able to identify the most frequent mutations related to rifampicin (RMP) and isoniazid (INH) resistance. The assay is based on multiplex polymerase chain reaction, membrane hybridisation and colorimetric detection targeting of rpoB and katG genes, as well as the inhA promoter, which are all known to carry specific mutations associated with multidrug-resistant TB (MDR-TB). The assay was validated on a reference panel of 108 M. tuberculosis isolates that were characterised by the proportion method and by DNA sequencing of the targets. When comparing the performance of LINE-TB/MDR with DNA sequencing, the sensitivity, specificity and agreement were 100%, 100% and 100%, respectively, for RMP and 77.6%, 90.6% and 88.9%, respectively, for INH. Using drug sensibility testing as a reference standard, the performance of LINE-TB/MDR regarding sensitivity, specificity and agreement was 100%, 100% and 100% (95%), respectively, for RMP and 77%, 100% and 88.7% (82.2-95.1), respectively, for INH. LINE-TB/MDR was compared with GenoType MTBDRplus for 65 isolates, resulting in an agreement of 93.6% (86.7-97.5) for RIF and 87.4% (84.3-96.2) for INH. LINE-TB/MDR warrants further clinical validation and may be an affordable alternative for MDR-TB diagnosis.


Asunto(s)
Proteínas Bacterianas/genética , Catalasa/genética , Farmacorresistencia Bacteriana Múltiple/genética , Mutación/genética , Mycobacterium tuberculosis/genética , Oxidorreductasas/genética , Colorimetría , ADN Bacteriano/genética , Técnicas de Genotipaje , Isoniazida/farmacología , Reacción en Cadena de la Polimerasa Multiplex , Mycobacterium tuberculosis/efectos de los fármacos , Hibridación de Ácido Nucleico , Rifampin/farmacología
2.
Mem. Inst. Oswaldo Cruz ; 104(5): 710-714, Aug. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-528078

RESUMEN

Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC→ACC (Ser→Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100 percent of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Catalasa/genética , Farmacorresistencia Bacteriana/genética , Isoniazida/farmacología , Mycobacterium tuberculosis , Mutación/genética , Colorimetría/métodos , ADN Bacteriano/análisis , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA