Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Asian Spine Journal ; : 890-897, 2022.
Artículo en Inglés | WPRIM | ID: wpr-966356

RESUMEN

Methods@#For this prospective multicenter study, 40 patients were followed up through radiologic and clinical examinations for at least 1 year postoperatively. All surgical procedures were either single- or double-level LLIF using bioactive porous titanium spacers without bone grafts. @*Results@#Four patients were excluded from the study owing to aggravation from other comorbidities. Another 36 patients, including 26 and 10 with single- and double-level LLIFs, respectively, participated in the follow-up. The mean age at the time of surgery was 63.7 years. The mean operating time was 50.5 minutes per level. The mean estimated intraoperative blood loss was 11.6 mL per level. Clinical scores improved in all cases and were maintained throughout the follow-up period. The intervertebral bony union rates were 67.4% and 84.8% at 6 and 12 months, respectively. Endplate cyst signs were observed in 13.0% and 8.7% of patients at 6 and 12 months, respectively. Fused segmental angles were maintained throughout the follow-up period, indicating no cage subsidence. @*Conclusions@#Single- and double-level LLIFs using bioactive porous titanium spacers without bone grafts were found to be minimally invasive, resulting in clinical and imaging results comparable with conventional procedures. Therefore, this type of implant may be an option for minimally invasive spinal fusion surgery.

2.
Asian Spine Journal ; : 373-380, 2021.
Artículo en Inglés | WPRIM | ID: wpr-889582

RESUMEN

The purpose of this study was to introduce our patient-specific bioactive porous titanium implant manufactured using selective laser melting (SLM) and to establish the efficacy and safety of the implant for stand-alone anterior cervical discectomy and fusion (ACDF) based on a prospective clinical trial. We designed a customized ACDF implant using patient-specific data and manufactured the implant using SLM. We produced a bioactive surface through a specific chemical and thermal treatment. Using this implant, we surgically treated four patients with cervical degenerative disc disease and evaluated the clinical and radiological results. We achieved successful bony union in all but one patient without autologous bone grafting within 1 year. We observed no implant subsidence during the follow-up period, and all clinical parameters improved significantly after surgery, with no reported implant-related adverse effects. Our customized bioactive porous titanium implant is a safe and promising implant for stand-alone ACDF.

3.
Asian Spine Journal ; : 373-380, 2021.
Artículo en Inglés | WPRIM | ID: wpr-897286

RESUMEN

The purpose of this study was to introduce our patient-specific bioactive porous titanium implant manufactured using selective laser melting (SLM) and to establish the efficacy and safety of the implant for stand-alone anterior cervical discectomy and fusion (ACDF) based on a prospective clinical trial. We designed a customized ACDF implant using patient-specific data and manufactured the implant using SLM. We produced a bioactive surface through a specific chemical and thermal treatment. Using this implant, we surgically treated four patients with cervical degenerative disc disease and evaluated the clinical and radiological results. We achieved successful bony union in all but one patient without autologous bone grafting within 1 year. We observed no implant subsidence during the follow-up period, and all clinical parameters improved significantly after surgery, with no reported implant-related adverse effects. Our customized bioactive porous titanium implant is a safe and promising implant for stand-alone ACDF.

4.
Asian Spine Journal ; : 158-163, 2016.
Artículo en Inglés | WPRIM | ID: wpr-28500

RESUMEN

Osteoid osteoma (OO) is a benign osteoblastic tumor. Its curative treatment is complete removal of the nidus, where intraoperative localization of the nidus governs clinical results. However, treatment can be difficult since the lesion is often invisible over the bony surface. Accordingly, establishment of an ideal less invasive surgical strategy for spinal OO remains yet unsettled. We illustrate the efficacy of a computed tomography (CT)-based navigation system in excising OO located adjacent to the facet joint of spine. In our 2 cases, complete and pin-point removal of the nidus located close to the facet joint was successfully achieved, without excessive removal of the bone potentially leading to spinal instability and possible damage of nearby neurovascular structures. We advocate a less invasive approach to spinal OO, particularly in an environment with an available CT-based navigation system.


Asunto(s)
Osteoblastos , Osteoma Osteoide , Columna Vertebral , Articulación Cigapofisaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA