RESUMEN
OBJECTIVE: Brain activity is known to be voluntarily controllable by neurofeedback, a kind of electroencephalographic (EEG) operant conditioning. Although its efficacy in clinical effects has been reported, it is yet to be uncovered whether or how a specific band activity is controllable. Here, we examined EEG spectral profiles along with conditioning training of a specific brain activity, theta band (4–8 Hz) amplitude, in rats. METHODS: During training, the experimental group received electrical stimulation to the medial forebrain bundle contingent to suppression of theta activity, while the control group received stimulation non-contingent to its own band activity. RESULTS: In the experimental group, theta activity gradually decreased within the training session, while there was an increase of theta activity in the control group. There was a significant difference in theta activity during the sessions between the two groups. The spectral theta peak, originally located at 7 Hz, shifted further towards higher frequencies in the experimental group. CONCLUSION: Our results showed that an operant conditioning technique could train rats to control their specific EEG activity indirectly, and it may be used as an animal model for studying how neuronal systems work in human neurofeedback.
Asunto(s)
Animales , Humanos , Ratas , Encéfalo , Condicionamiento Operante , Estimulación Eléctrica , Electroencefalografía , Haz Prosencefálico Medial , Modelos Animales , Neurorretroalimentación , NeuronasRESUMEN
Head restraining is an experimental technique that firmly secures the animal's head to a fixation apparatus for the precise control and sensing of behaviors. However, procedural and surgical difficulties and limitations have been obstructing the use of the technique in neurophysiological and behavioral experiments. Here, we propose a novel design of the head-restraining apparatus which is easy to develop and convenient for practical use. Head restraining procedure can be completed by sliding the head mounter, which is molded by dental cement during implantation surgery, into the port, which serves as matching guide rails for the mounter, of the fixation bar. So neither skull-attached plates nor screws for fixation are needed. We performed intracranial self stimulation experiment in rats using the newly designed device. Rats were habituated to acclimatize the head-restraint environment and trained to discriminate two spatially distinguished cues using a customized push-pull lever as an operandum. Direct electrical stimulation into the medial forebrain bundle served as reward. We confirmed that head restraining was stable throughout experiments and rats were able to learn to manipulate the lever after successful habituation. Our experimental framework might help precise control or sensing of behavior under head fixed rats using direct electrical brain stimulation as a reward.
Asunto(s)
Animales , Ratas , Encéfalo , Condicionamiento Operante , Señales (Psicología) , Cementos Dentales , Estimulación Eléctrica , Hongos , Cabeza , Haz Prosencefálico Medial , Recompensa , AutoestimulaciónRESUMEN
We studied the effects of acetylcholinesterase inhibitors, donepezil and galantamine, and an N-methyl-D-aspartate (NMDA) receptor blocker, memantine, on sleep-wake architecture in rats. Screw electrodes were chronically implanted into the frontal and parietal cortex for the electroencephalography (EEG). EEG was recorded with a bio-potential amplifier for 8 h from 09:30 to 17:30. Vibration was recorded to monitor animal activity with a vibration measuring device. Sleep-wake states such as wake (W), slow-wave sleep (S) and paradoxical or rapid eye movement sleep (P), were scored every 10 sec by an experimenter. We measured mean episode duration and number of episode to determine which factor sleep disturbance was attributed to. Donepezil and memantine showed a significant increase in total W duration and decreases in total S and P duration and delta activity. Memantine showed increases in sleep latency and motor activity. Changes of S and P duration in memantine were attributed from changes of mean episode duration. Galantamine had little effect on sleep architecture. From these results, it is showed that galantamine may be an anti-dementia drug that does not cause sleep disturbances and memantine may be a drug that causes severe sleep disturbance.
Asunto(s)
Animales , Ratas , Inhibidores de la Colinesterasa , Electrodos , Electroencefalografía , Galantamina , Indanos , Memantina , Actividad Motora , N-Metilaspartato , Compuestos Organotiofosforados , Piperidinas , Sueño REM , VibraciónRESUMEN
Although quantitative EEG parameters, such as spectral band powers, are sensitive to centrally acting drugs in dose- and time-related manners, changes of the EEG parameters are redundant. It is desirable to reduce multiple EEG parameters to a few components that can be manageable in a real space as well as be considered as parameters representing drug effects. We calculated factor loadings from normalized values of eight relative band powers (powers of 0.5, 1.0~2.0, 2.5~4.0, 4.5~5.5, 6.0~8.0, 8.5~12.0, 12.5~24.5, and 25~49.5 Hz bands expressed as ratios of the power of 0.5-49.5 Hz band) of EEG during pre-drug periods (11:00~12:00) by factor analysis and constructed a two-dimensional canonical space (reference canonical space) by canonical correlation analysis. Eight relative band powers of EEG produced by either physostigmine or yohimbine were reduced to two canonical scores in the reference canonical space. While changes of the band powers produced by physostigmine and yohimbine were too redundant to describe the difference between two drugs, locations of two drugs in the reference canonical space represented the difference between two drug's effects on EEG. Because the distance between two locations in the canonical space (Mahalanobis distance) indicates the magnitude of difference between two different sets of EEG parameters statistically, the canonical scores and the distance may be used to quantitatively and qualitatively describe the dose-dependent and time-dependent effects and also tell similarity and dissimilarity among effects. Then, the combination of power spectral analysis and statistical analysis may help to classify actions of centrally acting drugs.