Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros








Intervalo de año
1.
Biomolecules & Therapeutics ; : 648-654, 2023.
Artículo en Inglés | WPRIM | ID: wpr-999687

RESUMEN

Oxidative stress-induced melanocyte apoptosis is linked to the immune system and plays a critical role in the pathogenesis of vitiligo. Aquaporin-3 (AQP3), which is downregulated in vitiligo keratinocytes, regulates intracellular H2O2 accumulation. However, the role of AQP3 in oxidative stress is uncertain in vitiligo. This study investigated the effect of downregulated AQP3 on oxidative stress in vitiligo using lesional and non-lesional skin specimen sets from vitiligo patients and primary cultured adult normal human epidermal keratinocytes, with or without downregulation and overexpression of AQP3 in the presence or absence of H2O2 treatment. The levels of nuclear factor E2-related factor 2 (NRF2) and/or its main target, NAD(P)H quinone dehydrogenase 1 (NQO-1), were lower in the lesional keratinocytes and cultured keratinocytes with AQP3 knockdown, but were increased in keratinocytes upon AQP3 overexpression. Ratios of NRF2 nuclear translocation and NQO-1 expression levels were further reduced in AQP3-knockdown keratinocytes following H2O2 treatment. The conditioned media from AQP3-knockdown keratinocytes treated with H2O2 contained higher concentrations of reactive oxygen species (ROS). Moreover, the number of viable melanocytes was reduced when the conditioned media were added to the culture media. Overall, AQP3 downregulation in the keratinocytes of patients with vitiligo can induce oxidative stress in neighboring melanocytes, leading to melanocyte death.

2.
Biomolecules & Therapeutics ; : 89-96, 2023.
Artículo en Inglés | WPRIM | ID: wpr-966399

RESUMEN

Uric acid produced by guanine deaminase (GDA) is involved in photoaging and hyperpigmentation. Reactive oxygen species (ROS) generated by uric acid plays a role in photoaging. However, the mechanism by which uric acid stimulates melanogenesis in GDA-overexpressing keratinocytes is unclear. Keratinocyte-derived paracrine factors have been identified as important mechanisms of ultraviolet-induced melanogenesis. Therefore, the role of paracrine melanogenic growth factors in GDA-induced hypermelanosis mediated by uric acid was examined. The relationships between ROS and these growth factors were examined.Primary cultured normal keratinocytes overexpressed with wild type or mutant GDA and those treated with xanthine or uric acid in the presence or absence of allopurinol, H2O2, or N-acetylcysteine (NAC) were used in this study. Intracellular and extracellular bFGF and SCF levels were increased in keratinocytes by wild type, but not by loss-of-function mutants of GDA overexpression. Culture supernatants from GDA-overexpressing keratinocytes stimulated melanogenesis, which was restored by anti-bFGF and anti-SCF antibodies. Allopurinol treatment reduced the expression levels of bFGF and SCF in both GDA-overexpressing and normal keratinocytes exposed to exogenous xanthine; the exogenous uric acid increased their expression levels. H2O2-stimulated tyrosinase expression and melanogenesis were restored by NAC pretreatment. However, H2O2 or NAC did not upregulate or downregulate bFGF or SCF, respectively. Overall, uric acid could be involved in melanogenesis induced by GDA overexpression in keratinocytes via bFGF and SCF upregulation not via ROS generation.

3.
Biomolecules & Therapeutics ; : 203-211, 2022.
Artículo en Inglés | WPRIM | ID: wpr-925598

RESUMEN

Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.

4.
Biomolecules & Therapeutics ; : 417-423, 2018.
Artículo en Inglés | WPRIM | ID: wpr-715612

RESUMEN

Extracellular interleukin 1 alpha (IL-1α) released from keratinocytes is one of the endpoints for in vitro assessments of skin irritancy. Although cells dying via primary skin irritation undergo apoptosis as well as necrosis, IL-1α is not released in apoptotic cells. On the other hand, active secretion has been identified in interleukin-1 receptor antagonist (IL-1ra), which was discovered to be a common, upregulated, differentially-expressed gene in a microarray analysis performed with keratinocytes treated using cytotoxic doses of chemicals. This study examined whether and how IL-1ra, particularly extracellularly released IL-1ra, was involved in chemically-induced keratinocyte cytotoxicity and skin irritation. Primary cultured normal adult skin keratinocytes were treated with cytotoxic doses of chemicals (hydroquinone, retinoic acid, sodium lauryl sulfate, or urshiol) with or without recombinant IL-1ra treatment. Mouse skin was administered irritant concentrations of hydroquinone or retinoic acid. IL-1ra (mRNA and/or intracellular/extracellularly released protein) levels increased in the chemically treated cultured keratinocytes with IL-1α and IL-1β mRNAs and in the chemically exposed epidermis of the mouse skin. Recombinant IL-1ra treatment significantly reduced the chemically-induced apoptotic death and intracellular/extracellularly released IL-1α and IL-1β in keratinocytes. Collectively, extracellular IL-1ra released from keratinocytes could be a compensatory mechanism to reduce the chemically-induced keratinocyte apoptosis by antagonism to IL-1α and IL-1β, suggesting potential applications to predict skin irritation.


Asunto(s)
Adulto , Animales , Humanos , Ratones , Apoptosis , Epidermis , Mano , Técnicas In Vitro , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1 , Interleucina-1alfa , Queratinocitos , Análisis por Micromatrices , Necrosis , ARN Mensajero , Piel , Dodecil Sulfato de Sodio , Tretinoina
5.
Journal of Korean Medical Science ; : 775-779, 2013.
Artículo en Inglés | WPRIM | ID: wpr-80568

RESUMEN

Genetic susceptibility is involved in the pathogenesis of vitiligo. Association studies with a whole genome-based approach instead of a single or a few candidate genes may be useful for discovering new susceptible genes. Although the etiology of non-segmental and segmental types is different, the association between gene polymorphisms and vitiligo has been reported, without defining types or in non-segmental type. Whole genome-based single nucleotide polymorphisms (SNPs) were examined in patients with non-segmental and segmental types of vitiligo using the Affymetrix GeneChip 500K mapping array, and 10 functional classes of significant SNPs were selected. Genotyping and data analysis of selected 10 SNPs was performed using real-time PCR. Genotype and allele frequencies were significantly different between both types of vitiligo and three of the target SNPs, DNAH5 (rs2277046), STRN3 (rs2273171), and KIAA1005 (rs3213758). A stronger association was suggested between the mutation in KIAA1005 (rs3213758) and the segmental type compared to the non-segmental type of vitiligo. DNAH5 (rs2277046), STRN3 (rs2273171), and KIAA1005 (rs3213758) may be new vitiligo-related SNPs in Korean patients, either non-segmental or segmental type.


Asunto(s)
Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Proteínas Adaptadoras Transductoras de Señales/genética , Pueblo Asiatico/genética , Autoantígenos/genética , Dineínas Axonemales/genética , Proteínas de Unión a Calmodulina/genética , Frecuencia de los Genes , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , República de Corea , Vitíligo/genética
6.
Experimental & Molecular Medicine ; : 517-524, 2009.
Artículo en Inglés | WPRIM | ID: wpr-107284

RESUMEN

In this study, the essential oil from lotus flower extract, including petals and stamens, was assessed with regard to its effects on melanogenesis in human melanocytes. The lotus flower essential oil was shown to stimulate melanin synthesis and tyrosinase activity in a dose-dependent manner. The lotus flower essential oil induced the expression of tyrosinase, microphthalmia-associated transcription factor M (MITF-M), and tyrosinase-related proten-2 (TRP-2) proteins, but not tyrosinase mRNA. Moreover, it increased the phosphorylation of ERK and cAMP response element binding protein (CREB). In order to verify the effective components of the lotus flower oil, its lipid composition was assessed. It was found to be comprised of palmitic acid methyl ester (22.66%), linoleic acid methyl ester (11.16%), palmitoleic acid methyl ester (7.55%) and linolenic acid methyl ester (5.16%). Among these components, palmitic acid methyl ester clearly induced melanogenesis as the result of increased tyrosinase expression, thereby indicating that it may play a role in the regulation of melanin content. Thus, our results indicate that lotus flower oil may prove useful in the development of gray hair prevention agents or tanning reagents.


Asunto(s)
Humanos , Western Blotting , Proliferación Celular , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Flores/química , Cromatografía de Gases y Espectrometría de Masas , Oxidorreductasas Intramoleculares/genética , Lotus/química , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/genética , Monofenol Monooxigenasa/genética , Fosforilación , Aceites de Plantas/farmacología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/citología
7.
Experimental & Molecular Medicine ; : 603-613, 2007.
Artículo en Inglés | WPRIM | ID: wpr-170426

RESUMEN

Pigmentation may result from melanocyte proliferation, melanogenesis, migration or increases in dendricity. Recently, it has been reported that secreted phospholipase A2(sPLA2) known as a component of bee venom (BV), stimulates melanocyte dendricity and pigmentation. BV has been used clinically to control rheumatoid arthritis and to ameliorate pain via its anti-inflammatory and antinociceptive properties. Moreover, after treatment with BV, pigmentation around the injection sites was occasionally observed and the pigmentation lasted a few months. However, no study has been done about the effect of BV on melanocytes. Thus, in the present study, we examined the effect of BV on the proliferation, melanogenesis, dendricity and migration in normal human melanocytes and its signal transduction. BV increased the number of melanocytes dose and time dependently through PKA, ERK, and PI3K/Akt activation. The level of cAMP was also increased by BV treatment. Moreover, BV induced melanogenesis through increased tyrosinase expression. Furthermore, BV induced melanocyte dendricity and migration through PLA2activation. Overall, in this study, we demonstrated that BV may have an effect on the melanocyte proliferation, melanogenesis, dendricity and migration through complex signaling pathways in vitro, responsible for the pigmentation. Thus, our study suggests a possibility that BV may be developed as a therapeutic drug for inducing repigmentation in vitiligo skin.


Asunto(s)
Animales , Humanos , Secuencia de Bases , Venenos de Abeja/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Cartilla de ADN/genética , Colforsina/farmacología , Expresión Génica/efectos de los fármacos , Melaninas/biosíntesis , Melanocitos/citología , Factor de Transcripción Asociado a Microftalmía/biosíntesis , Monofenol Monooxigenasa/biosíntesis , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA