Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469652

RESUMEN

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.

2.
Braz. j. microbiol ; 49(supl.1): 140-150, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-974343

RESUMEN

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Microbiología Industrial/métodos , Sorghum/microbiología , Etanol/metabolismo , Saccharomyces cerevisiae/química , Células Inmovilizadas/metabolismo , Células Inmovilizadas/química , Sorghum/metabolismo , Sorghum/química , Etanol/análisis , Alginatos/química , Fermentación
3.
Electron. j. biotechnol ; 14(1): 4-5, Jan. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591922

RESUMEN

Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 +/- 1.35 g l-1, 3.01 +/- 0.08 g l-1 h-1 and 0.49 +/- 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 +/- 0.11 g l-1, 3.49 +/- 0.00 g l-1 h-1 and 0.49 +/- 0.01, respectively, whereas lower P (119.53 +/- 0.20 g l-1) and Qp (2.13 +/- 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50 percent of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 +/- 0.28 to 109.53 +/- 1.06 g l-1.


Asunto(s)
Etanol/metabolismo , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Fermentación , Fermentación/fisiología , Preparaciones de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA