Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Epidemiology and Health ; : e2022006-2022.
Artículo en Coreano | WPRIM | ID: wpr-937578

RESUMEN

OBJECTIVES@#We analyzed data to determine whether there are distinguishing characteristics depending on the success or failure of control for coronavirus disease 2019 (COVID-19) by country in the trend of the daily number of confirmed cases and the number of tests. @*METHODS@#We obtained the number of confirmed cases and tests per day for almost every country in the world from Our World in Data. The Pearson correlation between the two time series was calculated according to the time delay to analyze the relationship between the number of tests and the number of cases with a lag. @*RESULTS@#For each country, we obtained the time lag that makes the maximum correlation between the number of confirmed cases and the number of tests for COVID-19. It can be seen that countries whose time lag making maximum correlation lies in a special section between about 15 days and 20 days are generally been successful in controlling COVID-19. That section looks like a trench on the battlefield. @*CONCLUSIONS@#We have seen the possibility that the success in mitigating COVID-19 can be expressed as a simple indicator of the time lag of the correlation between confirmed cases and tests. This time lag indicator is presumably reflected by efforts to actively trace the infected persons.

2.
Epidemiology and Health ; : e2020045-2020.
Artículo en Inglés | WPRIM | ID: wpr-898264

RESUMEN

Objectives@#In 2020, the coronavirus disease 2019 (COVID-19) respiratory infection is spreading in Korea. In order to prevent the spread of an infectious disease, infected people must be quickly identified and isolated, and contact with the infected must be blocked early. This study attempted to verify the intervention effects on the spread of an infectious disease by using these measures in a mathematical model. @*Methods@#We used the susceptible-infectious-recovery (SIR) model for a virtual population group connected by a special structured network. In the model, the infected state (I) was divided into I in which the infection is undetected and Ix in which the infection is detected. The probability of transitioning from an I state to Ix can be viewed as the rate at which an infected person is found. We assumed that only those connected to each other in the network can cause infection. In addition, this study attempted to evaluate the effects of isolation by temporarily removing the connection among these people. @*Results@#In Scenario 1, only the infected are isolated; in Scenario 2, those who are connected to an infected person and are also found to be infected are isolated as well. In Scenario 3, everyone connected to an infected person are isolated. In Scenario 3, it was possible to effectively suppress the infectious disease even with a relatively slow rate of diagnosis and relatively high infection rate. @*Conclusions@#During the epidemic, quick identification of the infected is helpful. In addition, it was possible to quantitatively show through a simulation evaluation that the management of infected individuals as well as those who are connected greatly helped to suppress the spread of infectious diseases.

3.
Epidemiology and Health ; : e2020045-2020.
Artículo en Inglés | WPRIM | ID: wpr-890560

RESUMEN

Objectives@#In 2020, the coronavirus disease 2019 (COVID-19) respiratory infection is spreading in Korea. In order to prevent the spread of an infectious disease, infected people must be quickly identified and isolated, and contact with the infected must be blocked early. This study attempted to verify the intervention effects on the spread of an infectious disease by using these measures in a mathematical model. @*Methods@#We used the susceptible-infectious-recovery (SIR) model for a virtual population group connected by a special structured network. In the model, the infected state (I) was divided into I in which the infection is undetected and Ix in which the infection is detected. The probability of transitioning from an I state to Ix can be viewed as the rate at which an infected person is found. We assumed that only those connected to each other in the network can cause infection. In addition, this study attempted to evaluate the effects of isolation by temporarily removing the connection among these people. @*Results@#In Scenario 1, only the infected are isolated; in Scenario 2, those who are connected to an infected person and are also found to be infected are isolated as well. In Scenario 3, everyone connected to an infected person are isolated. In Scenario 3, it was possible to effectively suppress the infectious disease even with a relatively slow rate of diagnosis and relatively high infection rate. @*Conclusions@#During the epidemic, quick identification of the infected is helpful. In addition, it was possible to quantitatively show through a simulation evaluation that the management of infected individuals as well as those who are connected greatly helped to suppress the spread of infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA