RESUMEN
Abstract Periodontal regeneration is a challenge, and tissue engineering based on periodontal ligament stem cells (PDLSCs) has been shown to be a promising alternative to this process. However, the need for scaffolds has limited the therapeutic use of PDLSCs. In this context, scaffold-free tissue engineering using the cell sheet (CS) technique has been developed as an alternative approach to improve tissue regeneration. Previously, we showed that Protease-activated receptor-1 (PAR1) can regulate PDLSCs. Herein, we evaluate whether PAR1 influences osteogenesis in CSs produced from PDLSCs, without the use of scaffolds. PDLSCs were isolated and immunophenotyped. Then, CSs were obtained by supplementing the culture medium with ascorbic acid (50 µg/mL), and PAR1 was activated through its agonist peptide (100 nM). Scaffold-free 3D CSs were successfully produced from PDLSCs, and they showed higher proliferation potential than isolated PDLSCs. Also, PAR1 activation decreased senescence and improved osteogenic differentiation of CSs by increasing mineralized nodule deposition and alkaline phosphatase concentration; PAR1 also modulated osteogenic markers at the gene and protein levels. We further demonstrated that this effect was regulated by Wnt, TGF-βI, MEK, p38 MAPK, and FGF/VEGF signaling pathways in PDLSCs (p < 0.05%). Overall, PAR1 activation increased osteogenic activity in CSs, emerging as a promising scaffold-free therapeutic approach for periodontal regeneration.
RESUMEN
Membranas celulares (MCs; Cell Sheets), constituídas por células-tronco (CTs), são autodestacáveis da placa de cultivo, e sem subcultivos geram grande quantidade de células que podem ser transplantadas de maneira mais próxima da fisiologia celular, mantendo-se as ligaçُões celulares e a matriz extracelular produzidas em cultura. O Ácido ascórbico ou vitamina C (VC) tem efeito indutor da formação destas MCs, aumentando a longevidade e tempo de indiferenciação das CTs. A similaridade observada entre respostas biológicas da VC em MCs e aquelas da Laserfototerapia (LFT) sobre células e tecidos, nos levou à hipótese de que estas terapias poderiam se complementar melhorando o prognóstico de futura aplicação clínica dessas MCs em regenerações tecidos de interesse odontológico. Para testar essa hipótese, LFT e VC foram aplicadas associadas ou não na indução de MCs de células-tronco da polpa dentária humana (hDPSCs). Para tanto, hDPSCs descongeladas, que expressaram níveis típicos de marcadores de superfície de células-tronco mesenquimais, foram plaqueadas em placas de 6 poços (5x104 células por poço). Vinte e quatro horas depois do plaqueamento as culturas foram submetidas aos tratamentos dos grupos experimentais: Controle: hDPSCs em P3 cultivadas com meio clonogênico; Senescente: hDPSCs em P27 cultivadas com meio clonogênico; VC: P3 cultivadas com meio clonogênico acrescido de VC (20µg/ml); Laser: P3 cultivadas com meio clonogênico e submetido à LFT (contato e pontual - 5 pontos / poço, 660 nm, 20 mW, 0,028 cm², 0,71 W/cm², 7 segundos, 5 J/cm², 0,14 J por ponto, 48 horas de intervalo) e Laser+VC: P3 cultivadas com meio clonogênico acrescido de VC e submetido
à LFT. Em 24 horas, 7 e 13 dias as hDPSCs dos diferentes grupos experimentais foram observadas macro e microscopicamente, e atividade da enzima telomerase foi avaliada por PCR-TRAP, complementado por ELISA. Para a avaliação da expressão de genes relacionados à natureza e indiferenciação (Mitofilina e Oct 4) e à longevidade (fase catalíca da enzima telomerase - hTERT); bem como à senescência das células do grupo senescente (ß-galactosidase), as hDPSCs de todos os grupos experimentais foram submetidas ao RT-qPCR As hDPSCs foram capazes de formar MCs somente nos grupos VC e Laser+VC (100%), entre 10 e 13 dias. As MCs do grupo Laser+VC apresentaram maior facilidade na manipulação. Atividade de Telomerase nas hDPSCs foi observada somente em 24 horas (Controle e LFT) e em 7 dias (VC e Laser+VC). Os marcadores de indiferenciação (Oct 4) e mesenquimal (mitofilina), bem como a hTERT foram expressos nas hDPSCs de todos os grupos experimentais. O Oct4 e o hTERT, em 7 dias, apresentaram expressões significativamente maiores nos grupos VC e Laser+VC em comparação com os demais (p < 0,0001, p = 0,0009, respectivamente). A expressão da mitofilina foi significativamente maior no grupo Laser+VC, em 7 dias (p =0,033). A técnica de obtenção de MCs de hDPSCs por essa metodologia foi considerada adequada para ser testada em procedimentos regenerativos. A LFT quando associada à VC não interferiu na formação das MCs, nem na manutenção da longevidade e indiferenciação das hDPSCs. Adicionalmente, a LFT melhorou a manipulação das MCs. Assim sendo, a associação de VC e LFT na indução de MCs parece promissora para futura utilização de MCs na odontologia regenerativa.
Cell Sheets, consisting of stem cells (SCs) are self detachable from the cultivation plate, and with no subcultivation can generate large amount of cells. The cell sheets can be transplanted closer to cell physiology environment by keeping the cell connections and the extracellular matrix produced in culture. Ascorbic acid or Vitamin C (VC) has inductive effect on cell sheet formation, increasing the longevity and the stemness of the cell for long period of time. The similarity between biological responses of VC in cell sheets and those of Laserphototherapy (LPT, Laser) on cells and tissues led us to hypothesize that these therapies could improve the prognosis of future clinical application of these cell sheets in regeneration of dental tissues. To test this hypothesis, LPT and VC were applied, associated or not, to induce human dental pulp stem cells (hDPSCs). Therefore, hDPSCs, which expressed typical levels of mesenchymal stem cell surface markers, were plated in 6-well plates (5x104 cells per well). Twenty-four hours later they were subjected to the treatment of experimental groups: Control: hDPSCs in P3 cultured with regular medium; Senescent: hDPSCs in P27 cultured with regular medium; VC: P3 cultured with regular medium supplemented with VC (20 ?g/ml); Laser: P3 cultures with regular medium and submitted to LPT (punctual and contact mode-5 points / well, 660 nm, 20 mW, 0.028 cm², 0.71 W/cm²,
7 sec, 5 J/cm², 0.14 J per point, 48 hours-intervals) and Laser+VC: P3 cultured with regular medium supplemented with VC and submitted to LPT Within 24 hours, 7 and 13 days the hDPSCs of the different experimental groups were observed macroscopically and microscopically, and the telomerase enzyme activity was assessed by PCR-TRAP, complemented by ELISA. To evaluate the expression of genes related to the nature and differentiation (Mitofilina and Oct 4), longevity (catalytic phase of telomerase-hTERT enzyme), and the senescence of the senescent group cells (?-galactosidase), the hDPSCs of all experimental groups were subjected to RT-qPCR. The RT-qPCR data were compared by ANOVA complemented by the Tukey's test (p <= 0.05). The hDPSCs were able to form cell sheets only in the VC and Laser+VC groups (100%). Additionally, the cell sheets of the Laser+VC group presented easier handling...