Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo | IMSEAR | ID: sea-210542

RESUMEN

Diabetic complications may in part be due to inflammation. Diabetes can also develop in non-obese people.Nonetheless, organ inflammation in non-obese type 2 diabetes mellitus animals has never been investigated. The GotoKakizaki rats were divided into two groups: diabetes and diabetes treated with metformin. The glycemia parameterswere then determined. Serum and internal organs, including the liver, kidney, and brain were collected to determinethe levels of inflammatory cytokine and mRNA expression. The research found an increase in interleukin-6 (IL-6)and IL-1β cytokine levels in the liver of the diabetic group, which corresponds with the mRNA expression of bothcytokines. The metformin group significantly reduces the mRNA expression of liver IL-6. In the kidney, there was anincrease in IL-6 cytokine levels in the diabetic group, while the metformin group could reduce the mRNA expressionlevel of tumor necrosis factor α (TNF-α). In addition, there were IL-6 and TNF-α cytokines level increased in thebrain of the diabetic group. IL-1β mRNA expression levels increased in the diabetic group and were reduced by themetformin treatment. The metformin treatment reduced serum TNF-α cytokines. In summary, this study demonstratedthat internal organ inflammation in non-obese diabetic rats, which could provide evidence for organ inflammation,may potentially explain diabetic complications.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 176-184, 2015.
Artículo en Chino | WPRIM | ID: wpr-500501

RESUMEN

Objective:To study evolutionary relationship of the 5’untranslated regions (5’UTRs) in low passage dengue3 viruses (DEN3) isolated from hospitalized children with different clinical manifestations in Bangkok during 24 year-evolution (1977-2000) comparing to the DEN3 prototype (H87).Methods:The 5’UTRs of these Thai DEN3 and the H87 prototype were amplified by RT-PCR and sequenced. Their multiple sequence alignments were done by Codon Code Aligner v 4.0.4 software and their RNA secondary structures were predicted by MFOLD software. Replication of five Thai DEN3 candidates comparing to the H87 prototype were done in human (HepG2) and the mosquito (C6/36) cell lines.Results:Among these Thai DEN3, the completely identical sequences of their first 89 nucleotides, their high-order secondary structure of 5’UTRs and three SNPs including the predominant C90T, and two minor SNPs including A109G and A112G were found. The C90T of Thai DEN3, Bangkok isolates was shown predominantly before 1977. Five Thai DEN3 candidates with the predominant C90T were shown to replicate in human (HepG2) and the mosquito (C6/36) cell lines better than the H87 prototype. However, their highly conserved sequences as well as SNPs of the 5’UTR did not appear to correlate with their disease severity in human.Conclusions:Our findings highlighted evolutionary relationship of the completely identical 89 nucleotide sequence, the high-order secondary structure and the predominant C90T of the 5’UTR of these Thai DEN3 during 24 year-evolution further suggesting to be their genetic markers and magic targets for future research on antiviral therapy as well as vaccine approaches of Thai DEN3.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 176-184, 2015.
Artículo en Inglés | WPRIM | ID: wpr-820381

RESUMEN

OBJECTIVE@#To study evolutionary relationship of the 5'untranslated regions (5'UTRs) in low passage dengue3 viruses (DEN3) isolated from hospitalized children with different clinical manifestations in Bangkok during 24 year-evolution (1977-2000) comparing to the DEN3 prototype (H87).@*METHODS@#The 5'UTRs of these Thai DEN3 and the H87 prototype were amplified by RT-PCR and sequenced. Their multiple sequence alignments were done by Codon Code Aligner v 4.0.4 software and their RNA secondary structures were predicted by MFOLD software. Replication of five Thai DEN3 candidates comparing to the H87 prototype were done in human (HepG2) and the mosquito (C6/36) cell lines.@*RESULTS@#Among these Thai DEN3, the completely identical sequences of their first 89 nucleotides, their high-order secondary structure of 5'UTRs and three SNPs including the predominant C90T, and two minor SNPs including A109G and A112G were found. The C90T of Thai DEN3, Bangkok isolates was shown predominantly before 1977. Five Thai DEN3 candidates with the predominant C90T were shown to replicate in human (HepG2) and the mosquito (C6/36) cell lines better than the H87 prototype. However, their highly conserved sequences as well as SNPs of the 5'UTR did not appear to correlate with their disease severity in human.@*CONCLUSIONS@#Our findings highlighted evolutionary relationship of the completely identical 89 nucleotide sequence, the high-order secondary structure and the predominant C90T of the 5'UTR of these Thai DEN3 during 24 year-evolution further suggesting to be their genetic markers and magic targets for future research on antiviral therapy as well as vaccine approaches of Thai DEN3.

4.
Asian Pacific Journal of Tropical Medicine ; (12): 176-184, 2015.
Artículo en Chino | WPRIM | ID: wpr-951517

RESUMEN

Objective: To study evolutionary relationship of the 5'untranslated regions (5'UTRs) in low passage dengue3 viruses (DEN3) isolated from hospitalized children with different clinical manifestations in Bangkok during 24 year-evolution (1977-2000) comparing to the DEN3 prototype (H87). Methods: The 5'UTRs of these Thai DEN3 and the H87 prototype were amplified by RT-PCR and sequenced. Their multiple sequence alignments were done by Codon Code Aligner v 4.0.4 software and their RNA secondary structures were predicted by MFOLD software. Replication of five Thai DEN3 candidates comparing to the H87 prototype were done in human (HepG2) and the mosquito (C6/36) cell lines. Results: Among these Thai DEN3, the completely identical sequences of their first 89 nucleotides, their high-order secondary structure of 5'UTRs and three SNPs including the predominant C90T, and two minor SNPs including A109G and A112G were found. The C90T of Thai DEN3, Bangkok isolates was shown predominantly before 1977. Five Thai DEN3 candidates with the predominant C90T were shown to replicate in human (HepG2) and the mosquito (C6/36) cell lines better than the H87 prototype. However, their highly conserved sequences as well as SNPs of the 5'UTR did not appear to correlate with their disease severity in human. Conclusions: Our findings highlighted evolutionary relationship of the completely identical 89 nucleotide sequence, the high-order secondary structure and the predominant C90T of the 5'UTR of these Thai DEN3 during 24 year-evolution further suggesting to be their genetic markers and magic targets for future research on antiviral therapy as well as vaccine approaches of Thai DEN3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA