Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Contemporary Pediatrics ; (12): 645-652, 2023.
Artículo en Chino | WPRIM | ID: wpr-982007

RESUMEN

OBJECTIVES@#To study the protective effect of melatonin (Mel) against oxygen-induced retinopathy (OIR) in neonatal mice and the role of the HMGB1/NF-κB/NLRP3 axis.@*METHODS@#Neonatal C57BL/6J mice, aged 7 days, were randomly divided into a control group, a model group (OIR group), and a Mel treatment group (OIR+Mel group), with 9 mice in each group. The hyperoxia induction method was used to establish a model of OIR. Hematoxylin and eosin staining and retinal flat-mount preparation were used to observe retinal structure and neovascularization. Immunofluorescent staining was used to measure the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis and lymphocyte antigen 6G. Colorimetry was used to measure the activity of myeloperoxidase.@*RESULTS@#The OIR group had destruction of retinal structure with a large perfusion-free area and neovascularization, while the OIR+Mel group had improvement in destruction of retinal structure with reductions in neovascularization and perfusion-free area. Compared with the control group, the OIR group had significant increases in the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis, the expression of lymphocyte antigen 6G, and the activity of myeloperoxidase (P<0.05). Compared with the OIR group, the OIR+Mel group had significant reductions in the above indices (P<0.05). Compared with the control group, the OIR group had significant reductions in the expression of melatonin receptors in the retina (P<0.05). Compared with the OIR group, the OIR+Mel group had significant increases in the expression of melatonin receptors (P<0.05).@*CONCLUSIONS@#Mel can alleviate OIR-induced retinal damage in neonatal mice by inhibiting the HMGB1/NF-κB/NLRP3 axis and may exert an effect through the melatonin receptor pathway.


Asunto(s)
Animales , Ratones , Proteína HMGB1 , Melatonina/uso terapéutico , Ratones Endogámicos C57BL , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Oxígeno/efectos adversos , Peroxidasa , Receptores de Melatonina , Enfermedades de la Retina/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA