Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1422790

RESUMEN

ABSTRACT Rare emerging pathogens such as Saprochaete clavata are associated with invasive fungal diseases, high morbidity, mortality, rapidly fatal infections, and outbreaks. However, little is known about S. clavata infections, epidemiology, risk factors, treatment, biofilms, and disease outcomes. The objective of this study was to describe a new case of severe S. clavata infection in a patient diagnosed at a referral children's hospital in Brazil, including antifungal minimal inhibitory concentration, S. clavata biofilm characterization, and molecular characterization. The S. clavata isolated from an immunocompromised 11-year-old male patient was characterized using MALDI-TOF, Gram staining, scanning electron microscopy (SEM), and next generation sequencing (NGS) of genomic DNA. Biofilm production was also evaluated in parallel with determining minimal inhibitory concentration (MIC) and biofilm sensitivity to antifungal treatment. We observed small to medium, whitish, farinose, dry, filamentous margin colonies, yeast-like cells with bacillary features, and biofilm formation. The MALDI-TOF system yielded a score of ≥ 2,000, while NGS confirmed S. clavata presence at the nucleotide level. The MIC values (in mg L-1) for tested drugs were as follows: fluconazole = 2, voriconazole ≤ 2, caspofungin ≥ 8, micafungin = 2, amphotericin B = 4, flucytosine ≤ 1, and anidulafungin = 1. Amphotericin B can be active against S. clavata biofilm and the fungus can be susceptible to new azoles. These findings were helpful for understanding the development of novel treatments for S. clavata-induced disease, including combined therapy for biofilm-associated infections.

2.
Rev. Soc. Bras. Med. Trop ; 56: e0181, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1422875

RESUMEN

ABSTRACT Background: The rate of tuberculosis (TB) infection among the prison population (PP) in Brazil is 28 times higher than that in the general population, and prison environment favors the spread of TB. Objective: To describe TB transmission dynamics and drug resistance profiles in PP using whole-genome sequencing (WGS). Methods: This was a retrospective study of Mycobacterium tuberculosis cultivated from people incarcerated in 55 prisons between 2016 and 2019; only one isolate per prisoner was included. Information about movement from one prison to another was tracked. Clinical information was collected, and WGS was performed on isolates obtained at the time of TB diagnosis. Results: Among 134 prisoners included in the study, we detected 16 clusters with a total of 58 (43%) cases of M. tuberculosis. Clusters ranged from two to seven isolates with five or fewer single nucleotide polymorphism (SNP) differences, suggesting a recent transmission. Six (4.4%) isolates were resistant to at least one anti-TB drug. Two of these clustered together and showed resistance to rifampicin, isoniazid, and fluoroquinolones, with 100% concordance between WGS and phenotypic drug-susceptibility testing. Prisoners with clustered isolates had a high amount of movement between prisons (two to eight moves) during the study period. Conclusions: WGS demonstrated the recent transmission of TB within prisons in Brazil. The high movement among prisoners seems to be related to the transmission of the same M. tuberculosis strain within the prison system. Screening for TB before and after the movement of prisoners using rapid molecular tests could play a role in reducing transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA