Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Herbal Medicines ; (4): 17-32, 2021.
Artículo en Chino | WPRIM | ID: wpr-953681

RESUMEN

Objective: To develop a powerful integrated strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) systems for the comprehensive characterization and quantification of multiple components of herbal medicines. Methods: Firstly, different mobile phase additives, analysis time, and MS acquisition modes were orthogonally tested with liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in order to detect as many components of Gelsemium elegans as possible with high peak intensity. Secondly, several data mining strategies, including database searching, diagnostic ion filtering and neutral loss filtering, were utilized to perform chemical profiling. Subsequently, this study focused on the quantification and validation of the performance of a liquid chromatography-triple mass spectrometry (LC-QqQ/MS) assay based on derivative multiple reaction monitoring (DeMRM). Results: A total of 147 components from G. elegans were characterized, among them 116 nontarget components were reported for the first time. A sensitive and reproducible LC-QqQ/MS method was successfully developed and validated for the simultaneous relative quantification of 41 components of G. elegans. This LC-QqQ/MS method was then applied to compare the contents of components in the roots, stems and leaves. Conclusion: The present integrated strategy would significantly contribute to chemical studies on herbal medicine, and its utility could be extended to other research fields, such as metabolomics, quality control, and pharmacokinetics.

2.
Acta Pharmaceutica Sinica B ; (6): 374-382, 2020.
Artículo en Inglés | WPRIM | ID: wpr-787622

RESUMEN

Background@# () (2n = 2x = 16) is genus of flowering plants belonging to the Gelsemicaeae family.@*Method@#Here, a high-quality genome assembly using the Oxford Nanopore Technologies (ONT) platform and high-throughput chromosome conformation capture techniques (Hi-C) were used.@*Results@#A total of 56.11 Gb of raw GridION X5 platform ONT reads (6.23 Gb per cell) were generated. After filtering, 53.45 Gb of clean reads were obtained, giving 160 × coverage depth. The genome assemblies 335.13 Mb, close to the 338 Mb estimated by k-mer analysis, was generated with contig N50 of 10.23 Mb. The vast majority (99.2%) of the assembled sequence was anchored onto 8 pseudo-chromosomes. The genome completeness was then evaluated and 1338 of the 1440 conserved genes (92.9%) could be found in the assembly. Genome annotation revealed that 43.16% of the genome is composed of repetitive elements and 23.9% is composed of long terminal repeat elements. We predicted 26,768 protein-coding genes, of which 84.56% were functionally annotated.@*Conclusion@#The genomic sequences of could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA