Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Pharmacological Bulletin ; (12): 146-154, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013609

RESUMEN

Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.

2.
Chinese Journal of Analytical Chemistry ; (12): 486-492, 2018.
Artículo en Chino | WPRIM | ID: wpr-692274

RESUMEN

A sensing system based on AuNP-AuNP-UCNP triple structure for efficient detection of dual targets was constructed. In the preparation of triple structure, the gold nanoparticles (AuNPs) and upconversion nanoparticles (NaYF4: Yb, Er, Gd, UCNPs) were synthesized and surface modified. Then the two nanoparticles and their aptamers were connected to form two kinds of optical fluorescent probes. A nucleic acid sequence that matches with two aptamers was designed, rendering the probes to get close based on the principle of complementary base pairing. On the basis of this, a sensing system with a triple structure was prepared,and its connecting effect was characterized by TEM. With this system, dual targets of bisphenol A and estradiol were efficiently and conveniently detected through quantitative determination by fluorescence and UV spectrophotometer. At reaction temperature of 30℃ and pH=7.8,this method exhibited good linear range for determination of bisphenol A and estradiol from 2 ng/mL to 200 ng/mL and from 10 ng/mL to 150 ng/mL, with limits of detection of 0.2 ng/mL and 0.5 ng/mL, respectively. This sensing system with the triple structure owned better specificity to structural and functional analogues, and showed good repeatability and stability. What's more,this sensing system was applied in actual water detection,with the recoveries between 86.1% and 107. 4%, and the relative standard deviation below 6. 8%. This method showed promising applications in other environmental estrogens in water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA