Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Hepatology ; (12): 8-12, 2023.
Artículo en Chino | WPRIM | ID: wpr-970938

RESUMEN

Objective: To explore the etiological diagnostic value of metagenomic next-generation sequencing (mNGS) in peritoneal dialysis (PD)-related peritonitis. Methods: The study was a retrospective cohort study. The clinical data of patients with PD-related peritonitis who were treated and underwent microbial cultivation and mNGS test at the same time from June 2020 to July 2021 in the Affiliated Drum Tower Hospital, Medical School of Nanjing University were analyzed. The positive rate, detection time and consistency between mNGS test and traditional microbial culture were compared. Results: A total of 18 patients with age of (50.4±15.4) years old and median dialysis time of 34.0 (12.4, 62.0) months were enrolled in the study, including 11 males and 7 females. Pathogenic microorganisms were isolated in 17 patients by mNGS test, with a positive rate of 17/18, which was higher than 13/18 of microbial culture, but the difference was not statistically significant (P=0.219). Both mNGS test and microbial culture isolated positive pathogenic bacteria in 12 patients, and mNGS test isolated the same types of pathogenic bacteria as microbial cultivation did in 11 patients. In five patients with negative microbial culture, mNGS test also isolated pathogenic microorganisms, including 3 cases of Staphylococcus epidermidis, 1 case of Mycobacterium tuberculosis and 1 case of Ureaplasma urealyticum. In 1 patient, microbial culture isolated pathogenic bacteria (Escherichia coli) whereas mNGS test did not. The detection time of mNGS was 25.0 (24.0, 27.0) h, which was significantly shorter than 89.0 (72.8, 122.0) h of microbial culture (Z=3.726, P<0.001). Conclusions: mNGS test can improve the detection rate of pathogenic microorganisms in PD-related peritonitis and greatly shorten the detection time, and has good consistency with microbial culture. mNGS may provide a new approach for pathogen identification of PD-related peritonitis, especially refractory peritonitis.


Asunto(s)
Femenino , Masculino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Diálisis Peritoneal/efectos adversos , Secuenciación de Nucleótidos de Alto Rendimiento , Peritonitis/diagnóstico , Sensibilidad y Especificidad
2.
China Journal of Chinese Materia Medica ; (24): 4678-4684, 2018.
Artículo en Chino | WPRIM | ID: wpr-771533

RESUMEN

The aim of this paper was to explore the effects and possible mechanisms in vitro of tea polyphenols (TP) delaying human glomerular mesangial cells (HGMCs) senescence induced by high glucose (HG). HGMCs were cultured in vitro and divided into the normal group (N, 5.5 mmol·L⁻¹ glucose), the mannitol group(MNT, 5.5 mmol·L⁻¹ glucose plus 24.5 mmol·L⁻¹ mannitol), the high dose of D-glucose group (HG, 30 mmol·L⁻¹ glucose), the low dose of TP group (L-TP, 30 mmol·L⁻¹ glucose plus 5 mg·L⁻¹ TP) and the high dose of TP group (H-TP, 30 mmol·L⁻¹ glucose plus 20 mg·L⁻¹ TP), which were cultured in 5% CO₂ at 37 °C, respectively. Firstly, the effects of TP on the cell morphology of HGMCs were observed after 72 h-intervention. Secondly, the cell cycle, the positive rate of senescence-associated-β-galactosidase (SA-β-gal) staining and the telomere length were detected, respectively. Finally, the protein expressions of p53, p21 and Rb in the p53-p21-Rb signaling pathway were investigated, respectively. And the expressions of p-STAT3 and miR-126 were examined severally. The results indicated that HG not only arrested the cell cycle in G₁ phase but also increased the positive rate of SA-β-gal staining, and shortened the telomere length. HG led to the protein over-expressions of p53, p21 and Rb and HGMCs senescence by activating the p53-p21-Rb signaling pathway. In addition, L-TP delayed HGMCs senescence by improving the cell cycle G₁ arrest, reducing SA-β-gal staining positive rate and lengthening the telomere length. L-TP reduced the protein over-expressions of p53, P21 and Rb induced by HG and inhibited the telomere-p53-p21-Rb signaling pathway. Moreover, the expression of p-STAT3 was increased and the expression of miR-126 was decreased in HGMCs induced by HG. L-TP reduced the expression of p-STAT3 and increased the expression of miR-126 in HGMCs. In conclusion, HG could induce HGMCs senescence by activating the telomere-p53-p21-Rb signaling pathway in vitro. L-TP could delay HGMCs senescence through regulating STAT3/miR-126 expressions and inhibiting the telomere-p53-p21-Rb signaling pathway activation. These findings could provide the effective interventions in clinic for preventing and treating renal cell senescence in diabetic kidney disease.


Asunto(s)
Humanos , Células Cultivadas , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Glucosa , Células Mesangiales , MicroARNs , Polifenoles , Factor de Transcripción STAT3 , , Telómero , Proteína p53 Supresora de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA