Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Korean Circulation Journal ; : 87-88, 2022.
Artículo en Inglés | WPRIM | ID: wpr-917392

RESUMEN

no abstract available.

2.
Yonsei Medical Journal ; : 200-208, 2021.
Artículo en Inglés | WPRIM | ID: wpr-875618

RESUMEN

Purpose@#To compare image quality in selective intracoronary contrast-injected computed tomography angiography (SelectiveCTA) with that in conventional intravenous contrast-injected CTA (IV-CTA). @*Materials and Methods@#Six pigs (35 to 40 kg) underwent both IV-CTA using an intravenous injection (60 mL) and Selective-CTA using an intracoronary injection (20 mL) through a guide-wire during/after percutaneous coronary intervention. Images of the common coronary artery were acquired. Scans were performed using a combined machine comprising an invasive coronary angiography suite and a 320-channel multi-slice CT scanner. Quantitative image quality parameters of CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), mean lumen diameter (MLD), and mean lumen area (MLA) were measured and compared. Qualitative analysis was performed using intraclass correlation coefficient (ICC), which was calculated for analysis of interobserver agreement. @*Results@#Quantitative image quality, determined by assessing the uniformity of CT attenuation (399.06 vs. 330.21, p<0.001), image noise (24.93 vs. 18.43, p<0.001), SNR (16.43 vs. 18.52, p=0.005), and CNR (11.56 vs. 13.46, p=0.002), differed significantly between IV-CTA and Selective-CTA. MLD and MLA showed no significant difference overall (2.38 vs. 2.44, p=0.068, 4.72 vs. 4.95, p=0.078).The density of contrast agent was significantly lower for selective-CTA (13.13 mg/mL) than for IV-CTA (400 mg/mL). Agreement between observers was acceptable (ICC=0.79±0.08). @*Conclusion@#Our feasibility study in swine showed that compared to IV-CTA, Selective-CTA provides better image quality and requires less iodine contrast medium.

4.
Yonsei Medical Journal ; : 482-491, 2020.
Artículo | WPRIM | ID: wpr-833361

RESUMEN

Purpose@#Cardiac power (CP) index is a product of mean arterial pressure (MAP) and cardiac output (CO). In aortic stenosis, however, MAP is not reflective of true left ventricular (LV) afterload. We evaluated the utility of a gradient-adjusted CP (GCP) index in predicting survival after transcatheter aortic valve replacement (TAVR), compared to CP alone. @*Materials and Methods@#We included 975 patients who underwent TAVR with 1 year of follow-up. CP was calculated as (CO× MAP)/[451×body surface area (BSA)] (W/m2). GCP was calculated using augmented MAP by adding aortic valve mean gradient (AVMG) to systolic blood pressure (CP1), adding aortic valve maximal instantaneous gradient to systolic blood pressure (CP2), and adding AVMG to MAP (CP3). A multivariate Cox regression analysis was performed adjusting for baseline covariates. Receiver operator curves (ROC) for CP and GCP were calculated to predict survival after TAVR. @*Results@#The mortality rate at 1 year was 16%. The mean age and AVMG of the survivors were 81±9 years and 43±4 mm Hg versus 80±9 years and 42±13 mm Hg in the deceased group. The proportions of female patients were similar in both groups (p=0.7). Both CP and GCP were independently associated with survival at 1 year. The area under ROCs for CP, CP1, CP2, and CP3 were 0.67 [95% confidence interval (CI), 0.62–0.72], 0.65 (95% CI, 0.60–0.70), 0.66 (95% CI, 0.61–0.71), and 0.63 (95% CI 0.58–0.68), respectively. @*Conclusion@#GCP did not improve the accuracy of predicting survival post TAVR at 1 year, compared to CP alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA