Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 303-312, 2023.
Artículo en Chino | WPRIM | ID: wpr-981543

RESUMEN

To investigate the effects of postoperative fusion implantation on the mesoscopic biomechanical properties of vertebrae and bone tissue osteogenesis in idiopathic scoliosis, a macroscopic finite element model of the postoperative fusion device was developed, and a mesoscopic model of the bone unit was developed using the Saint Venant sub-model approach. To simulate human physiological conditions, the differences in biomechanical properties between macroscopic cortical bone and mesoscopic bone units under the same boundary conditions were studied, and the effects of fusion implantation on bone tissue growth at the mesoscopic scale were analyzed. The results showed that the stresses in the mesoscopic structure of the lumbar spine increased compared to the macroscopic structure, and the mesoscopic stress in this case is 2.606 to 5.958 times of the macroscopic stress; the stresses in the upper bone unit of the fusion device were greater than those in the lower part; the average stresses in the upper vertebral body end surfaces were ranked in the order of right, left, posterior and anterior; the stresses in the lower vertebral body were ranked in the order of left, posterior, right and anterior; and rotation was the condition with the greatest stress value in the bone unit. It is hypothesized that bone tissue osteogenesis is better on the upper face of the fusion than on the lower face, and that bone tissue growth rate on the upper face is in the order of right, left, posterior, and anterior; while on the lower face, it is in the order of left, posterior, right, and anterior; and that patients' constant rotational movements after surgery is conducive to bone growth. The results of the study may provide a theoretical basis for the design of surgical protocols and optimization of fusion devices for idiopathic scoliosis.


Asunto(s)
Humanos , Escoliosis/cirugía , Fusión Vertebral/métodos , Vértebras Lumbares/cirugía , Osteogénesis , Fenómenos Biomecánicos/fisiología , Análisis de Elementos Finitos
2.
Journal of Medical Biomechanics ; (6): E638-E643, 2022.
Artículo en Chino | WPRIM | ID: wpr-961779

RESUMEN

Objective To investigate dynamic response of the finite element model of Lenke3 type scoliosis. Methods The finite element model was established based on CT scanning images from a patient with Lenke3 type scoliosis, and validation of the model was also conducted. Modal analysis, harmonic response analysis and transient dynamic analysis were carried out on the model. Results The first order natural frequency of this model was only 1-2 Hz.The amplitude of the finite element model was the largest at the first natural frequency. At the same resonance frequency, the amplitude of the thoracic curved vertebra was larger than that of the lumbar curved vertebra.The amplitude from T6 vertebra to L2 vertebra decreased successively. Conclusions The degree of spinal deformity may affect the perception of spine vibration, and the higher the degree of spinal deformity, the higher the sensitivity to vibration. The first natural frequency is most harmful to Lenke3 type scoliosis patients. Under cyclic loading, the thoracic curved vertebra is more prone to deformation than the lumbar curved vertebra. The closer to T1 segment, the greater the amplitude of the vibration is.

3.
Journal of Medical Biomechanics ; (6): E379-E383, 2019.
Artículo en Chino | WPRIM | ID: wpr-802470

RESUMEN

Objective To study the effect of sand therapy on the hemodynamics of flexural femoral artery, and further reveal the therapeutic mechanism of sand therapy from the perspective of hemodynamics. Methods The three-dimensional finite element model of the curved femoral artery was established based on CT images of human aorta, and the data of heart rate, peak blood flow velocity and inner diameter of femoral artery measured by the experiment were used as initial conditions and boundary conditions to carry out finite element numerical simulation. The blood flow velocity, pressure and wall shear stress before and after sand therapy were analyzed and compared under fluid-solid coupling condition. Results Compared with treatment before sand therapy, the longitudinal velocity of the flexural segment of blood vessel increased significantly, with an increase of 22.76%. The secondary reflux velocity decreased significantly, with a relative decrease of 18.26%. The wall shear stress decreased by 2.01% after sand therapy. Conclusions Sand therapy had a significant effect on blood fluidity, by improving blood flow of femoral arteries, and preventing deposition of arterial platelets. The transverse flow phenomenon was obviously weakened after sand therapy, which could avoid the deposition of substances in blood and had a positive effect on the prevention of atherosclerosis, thrombosis and other vascular diseases.

4.
Journal of Medical Biomechanics ; (6): E379-E383, 2019.
Artículo en Chino | WPRIM | ID: wpr-802367

RESUMEN

Objective To study the effect of sand therapy on the hemodynamics of flexural femoral artery, and further reveal the therapeutic mechanism of sand therapy from the perspective of hemodynamics. Methods The three-dimensional finite element model of the curved femoral artery was established based on CT images of human aorta, and the data of heart rate, peak blood flow velocity and inner diameter of femoral artery measured by the experiment were used as initial conditions and boundary conditions to carry out finite element numerical simulation. The blood flow velocity, pressure and wall shear stress before and after sand therapy were analyzed and compared under fluid-solid coupling condition. Results Compared with treatment before sand therapy, the longitudinal velocity of the flexural segment of blood vessel increased significantly, with an increase of 22.76%. The secondary reflux velocity decreased significantly, with a relative decrease of 18.26%. The wall shear stress decreased by 2.01% after sand therapy. Conclusions Sand therapy had a significant effect on blood fluidity, by improving blood flow of femoral arteries, and preventing deposition of arterial platelets. The transverse flow phenomenon was obviously weakened after sand therapy, which could avoid the deposition of substances in blood and had a positive effect on the prevention of atherosclerosis, thrombosis and other vascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA