RESUMEN
BACKGROUND AND OBJECTIVES: Glycolysis is the sole source of energy for the intraerythrocytic stages of Plasmodium falciparum, making glycolytic enzymes putative therapeutic targets. Enolase, a single copy gene in P. falciparum is one such enzyme whose activity is elevated approximately 10-15 fold in infected RBC's. It holds the possibility of having multiple biological functions in the parasite and hence can be a suitable candidate for diagnostic and chemotherapeutic purposes. METHODS: We have aimed at generating parasite-specific reagents in the form of monoclonal antibodies. We have raised monoclonal antibodies against the recombinant P. falciparum enolase. RESULTS: Two IgG monoclonals were obtained with 1:1000 titre and specific for P. falciparum enolase. Apicomplexan parasites including P. falciparum enolase has a plant like pentapeptide sequence (104EWGWS108) which is uniquely different from the host counterpart. A peptide spanning this pentapeptide region (ELDGSKNEWGWSKSK) coupled to BSA was used to raise parasite-specific antibody. Four monoclonals were obtained with 1:1000 titre and of IgM isotype. INTERPRETATION AND CONCLUSION: All the monoclonals are specific for P. falciparum enolase and one of them display reactivity against native P. falciparum enolase signifying this pentapeptide to be surface exposed and immunogenic.