Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
International Journal of Oral Science ; (4): 129-134, 2012.
Artículo en Inglés | WPRIM | ID: wpr-358214

RESUMEN

Enamel crystals are unique in shape, orientation and organization. They are hundreds of thousands times longer than they are wide, run parallel to each other, are oriented with respect to the ameloblast membrane at the mineralization front and are organized into rod or interrod enamel. The classical theory of amelogenesis postulates that extracellular matrix proteins shape crystallites by specifically inhibiting ion deposition on the crystal sides, orient them by binding multiple crystallites and establish higher levels of crystal organization. Elements of the classical theory are supported in principle by in vitro studies; however, the classical theory does not explain how enamel forms in vivo. In this review, we describe how amelogenesis is highly integrated with ameloblast cell activities and how the shape, orientation and organization of enamel mineral ribbons are established by a mineralization front apparatus along the secretory surface of the ameloblast cell membrane.


Asunto(s)
Humanos , Ameloblastos , Química , Biología Celular , Amelogénesis , Fisiología , Membrana Basal , Química , Cristalización , Esmalte Dental , Química , Proteínas del Esmalte Dental , Secreciones Corporales , Calcificación de Dientes
2.
Acta Physiologica Sinica ; (6): 1-13, 2010.
Artículo en Inglés | WPRIM | ID: wpr-337786

RESUMEN

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate and regulate cardiac rhythm and rate. It has been suggested that, unlike the HCN1 and HCN2 channels, the slower HCN4 channel may not exhibit voltage-dependent hysteresis. We studied the electrophysiological properties of human HCN4 (hHCN4) channels and its modulation by cAMP to determine whether hHCN4 exhibits hysteresis, by using single-cell patch-clamp in HEK293 cells stably transfected with hHCN4. Quantitative real-time RT-PCR was also used to determine levels of expression of HCNs in human cardiac tissue. Voltage-clamp analysis revealed that hHCN4 current (I(h)) activation shifted in the depolarizing direction with more hyperpolarized holding potentials. Triangular ramp and action potential clamp protocols also revealed hHCN4 hysteresis. cAMP enhanced I(h) and shifted activation in the depolarizing direction, thus modifying the intrinsic hHCN4 hysteresis behavior. Quantitative PCR analysis of human sinoatrial node (SAN) tissue showed that HCN4 accounts for 75% of the HCNs in human SAN while HCN1 (21%), HCN2 (3%), and HCN3 (0.7%) constitute the remainder. Our data suggest that HCN4 is the predominant HCN subtype in the human SAN and that I(h) exhibits voltage-dependent hysteresis behavior that can be modified by cAMP. Therefore, hHCN4 hysteresis potentially plays a crucial role in human SAN pacemaking activity.


Asunto(s)
Humanos , Relojes Biológicos , Fisiología , AMP Cíclico , Fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Fisiología , Fenómenos Electrofisiológicos , Células HEK293 , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Proteínas Musculares , Fisiología , Técnicas de Placa-Clamp , Canales de Potasio , Nodo Sinoatrial , Fisiología , Transfección
3.
Biomedical Imaging and Intervention Journal ; : 1-9, 2007.
Artículo en Inglés | WPRIM | ID: wpr-625880

RESUMEN

Purpose: Brain metastases from renal cell carcinoma (RCC) have been successfully treated with stereotactic radiosurgery (SRS). Metastases to extra-cranial sites may be treated with similar success using stereotactic body radiation therapy (SBRT), where image-guidance allows for the delivery of precise high-dose radiation in a few fractions. This paper reports the authors’ initial experience with image-guided SBRT in treating primary and metastatic RCC. Materials and methods: The image-guided Brainlab Novalis stereotactic system was used. Fourteen patients with 23 extra-cranial metastatic RCC lesions (orbits, head and neck, lung, mediastinum, sternum, clavicle, scapula, humerus, rib, spine and abdominal wall) and two patients with biopsy-proven primary RCC (not surgical candidates) were treated with SBRT (24-40 Gy in 3-6 fractions over 1-2 weeks). All patients were immobilised in body cast or head and neck mask. Image-guidance was used for all fractions. PET/CT images were fused with simulation CT images to assist in target delineation and dose determination. SMART (simultaneous modulated accelerated radiation therapy) boost approach was adopted. 4D-CT was utilised to assess tumour/organ motion and assist in determining planning target volume margins. Results: Median follow-up was nine months. Thirteen patients (93%) who received SBRT to extra-cranial metastases achieved symptomatic relief. Two patients had local progression, yielding a local control rate of 87%. In the two patients with primary RCC, tumour size remained unchanged but their pain improved, and their renal function was unchanged post SBRT. There were no significant treatment-related side effects. Conclusion: Image-guided SBRT provides excellent symptom palliation and local control without any significant toxicity. SBRT may represent a novel, non-invasive, nephron-sparing option for the treatment of primary RCC as well as extra-cranial metastatic RCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA