Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 229-236, 2022.
Artículo en Chino | WPRIM | ID: wpr-920526

RESUMEN

@#Alveolar bone is an important anatomic basis for implant-supported denture restoration, and its different degrees of defects determine the choices of bone augmentation surgeries. Therefore, the reconstruction of alveolar bone defects is an important technology in the clinical practice of implant restoration. However, the final reconstructive effect of bone quality, bone quantity and bone morphology is affected by many factors. Clinicians need to master the standardized diagnosis and treatment principles and methods to improve the treatment effect and achieve the goal of both aesthetic and functional reconstruction of both jaws. Based on the current clinical experience of domestic experts and the relevant academic guidelines of foreign counterparts, this expert consensus systematically and comprehensively summarized the augmentation strategies of alveolar bone defects from two aspects: the classification of alveolar bone defects and the appropriate selection of bone augmentation surgeries. The following consensus are reached: alveolar bone defects can be divided into five types (Ⅰ-0, Ⅰ-Ⅰ, Ⅱ-0, Ⅱ-Ⅰ and Ⅱ-Ⅱ) according to the relationship between alveolar bone defects and the expected position of dental implants. A typeⅠ-0 bone defect is a bone defect on one side of the alveolar bone that does not exceed 50% of the expected implant length, and there is no obvious defect on the other side; guided bone regeneration with simultaneous implant implantation is preferred. Type Ⅰ-Ⅰ bone defects refer to bone defects on both sides of alveolar bone those do not exceed 50% of the expected implant length; the first choice is autologous bone block onlay grafting for bone increments with staged implant placement or transcrestal sinus floor elevation with simultaneous implant implantation. Type Ⅱ-0 bone defects show that the bone defect on one side of alveolar bone exceeds 50% of the expected implant length, and there’s no obvious defect on the other side; autologous bone block onlay grafting (thickness ≤ 4 mm) or alveolar ridge splitting (thickness > 4 mm) is preferred for bone augmentation with staged implant placement. Type Ⅱ-Ⅰ bone defects indicate that the bone plate defect on one side exceeds 50% of the expected implant length and the bone defect on the other side does not exceed 50% of the expected implant length; autologous bone block onlay grafting or tenting techniques is preferred for bone increments with staged implant implantation. Type Ⅱ-Ⅱ bone defects are bone plates on both sides of alveolar bone those exceed 50% of the expected implant length; guided bone regeneration with rigid mesh or maxillary sinus floor elevation or cortical autologous bone tenting is preferred for bone increments with staged implant implantation. This consensus will provide clinical physicians with appropriate augmentation strategies for alveolar bone defects.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 122-130, 2017.
Artículo en Chino | WPRIM | ID: wpr-238406

RESUMEN

In our previous studies,a novel cortex-like TiO2 coating was prepared on Ti surface through micro-arc oxidation (MAO) by using sodium tetraborate as electrolyte,and the effects of the coating on cell attachment were testified.This study aimed to investigate the effects of this cortex-like MAO coating on osseointegration.A sand-blasting and acid-etching (SLA) coating that has been widely used in clinical practice served as control.Topographical and chemical characterizations were conducted by scanning electron microscopy,energy dispersive X-ray spectrometer,X-ray diffraction,contact angle meter,and step profiler.Results showed that the cortex-like coating had microslots and nanopores and it was superhydrophilic,whereas the SLA surface was hydrophobic.The roughness of MAO was similar to that of SLA.The MAO and SLA implants were implanted into the femoral condyles of New Zealand rabbits to evaluate their in-vivo performance through micro-CT,histological analysis,and fluorescent labeling at the bone-implant interface four weeks after surgery.The micro-CT showed that the bone volume ratio and mean trabecular thickness were similar between MAO and SLA groups four weeks after implantation.Histological analysis and fluorescent labeling showed no significant differences in the bone-implant contact between the MAO and SLA surfaces.It was suggested that with micro/nanostructure and superhydrophilicity,the cortex-like MAO coating causes excellent osseointegration,holding a promise of an application to implant modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA