Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 315-320, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013094

RESUMEN

@#As the main means of mastication, teeth can withstand countless functional contacts. The mechanical properties of teeth are closely related to their tissue structure. Enamel and dentin have a high hardness and modulus of elasticity, and their graded structure allows them to withstand bite forces without being susceptible to fracture. When tooth tissue is defective, full crown restoration is often needed to restore the normal shape and function of the tooth. Metal materials, ceramic materials, and polyetheretherketone (PEEK) materials are commonly used for crown restoration. Metal materials have certain disadvantages in terms of aesthetics and are relatively rarely used in clinical practice. Ceramic materials with different compositions exhibit differences in performance and aesthetics, but their elastic modulus and hardness are much higher than those of dental tissue, resulting in mismatching mechanical properties. In contrast, the elastic modulus of PEEK is lower than that of tooth tissue and similar to that of bone tissue, but its properties can be improved by fiber reinforcement. Notably, when the mechanical properties of a restoration material and tooth tissue are not fully matched, the interface between them often forms a potential weak link, which ultimately affects the stability and long-term effect of the restoration. This article introduces the mechanical properties and corresponding structural characteristics of enamel and dentin. On this basis, the advantages and limitations of existing restoration materials are analyzed, and the possibility of biomimetic design of full crowns is further explored.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 692-700, 2023.
Artículo en Chino | WPRIM | ID: wpr-980079

RESUMEN

Objective @# To investigate the effects of angiopoietin 4 (ANGPT4) on the odontogenic differentiation of human dental pulp stem cells. @* Methods @#This study has been reviewed and approved by the Ethics Committee, and informed consent has been obtained from patients. Human premolars were fixed, decalcified, dehydrated, embedded, and sectioned. Immunofluorescence staining was used to observe the expression and localization of ANGPT4. Human dental pulp stem cells (hDPSCs) were isolated and cultured in vitro. The growth state and morphology of hDPSCs were observed under an inverted phase contrast microscope. The expression of cell surface-related molecular markers was detected by flow cytometry. Alkaline phosphatase and alizarin red S staining were used to detect the odontogenic differentiation potential of hDPSCs. Oil-red O staining was used to detect the adipogenic differentiation potential of hDPSCs. RNA was extracted from hDPSCs at different time points after odontogenic induction, and RT-qPCR was used to analyze the mRNA expression of ANGPT4 and odontogenic-related genes during the odontogenic differentiation of hDPSCs in vitro. siRNA gene silencing technology was used to silence the expression of ANGPT4 in hDPSCs, and the silencing efficiency was detected by RT-qPCR and Western Blot. After silencing ANGPT4 in hDPSCs for 24 h, odontogenic induction was performed. Alkaline phosphatase and alizarin red S staining were performed on the 7th and 14th of induction to detect the odontogenic differentiation ability of hDPSCs after silencing ANGPT4@*Results @# Immunofluorescence staining of human premolars showed that ANGPT4 was expressed in odontoblasts and sub-odontoblastic cell-rich zone. hDPSCs were in good condition after 14 days of isolation and culture. Under the microscope, multiple cell colonies were observed, and the cell morphology was uniform and long spindle-shaped. The results of flow cytometry showed that hDPSCs expressed mesenchymal stem cell markers CD105 (90.42%) and CD90 (97.15%), but did not express hematopoietic cell markers CD45 (0.01%) and CD34 (0.08%). After odontogenic and adipogenic induction of hDPSCs, alkaline phosphatase staining, alizarin red S staining and oil red O staining were positive. The results of RT-qPCR after the odontogenic induction of hDPSCs showed that ANGPT4 was highly expressed on the 5th, 7th, 11th and 14th days of differentiation of hDPSCs (P<0.05), with the highest expression level on the 5th day. After hDPSCs were transfected with si-ANGPT4, the expression of ANGPT4 mRNA and protein was significantly down-regulated (P<0.05). The results of alkaline phosphatase staining showed that ALP staining intensity and area in the si-ANGPT4 group were significantly lower than those in the negative control. Alizarin red S staining showed that the formation of calcium nodules in the si-ANGPT4 group was significantly lower than that in the negative control.@* Conclusion@#ANGPT4 was expressed in odontoblasts and sub-odontoblastic cell-rich zone of human premolars. ANGPT4 may be a factor to promote the odontogenic differentiation of hDPSCs.

3.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 284-288, 2021.
Artículo en Chino | WPRIM | ID: wpr-873602

RESUMEN

@#Currently, titanium alloys are widely used in the field of stomatology; however, owing to long-term exposure to a complex microbial environment, dental plaques easily form on the surface of the materials, affecting the use efficiency and the service life of the materials. The antibacterial titanium alloy is a new kind of titanium alloy with antimicrobials added through surface modification or overall modification. Based on the location of antibacterial agents in titanium alloy materials, antibacterial titanium alloys can be divided into coating and alloy types. The antibacterial effect of coated antibacterial titanium alloy is good, but the disadvantage is that most of the coatings are not wear-resistant. The widely-used antibacterial agent of the alloy type is metal elements, which can be evenly distributed in the alloy, and the antibacterial properties are stable and long-lasting. Based on whether antibacterial agents can be released, antibacterial titanium alloys can be further divided into active antibacterial and passive antibacterial types. Active antibacterial type titanium alloys can release loaded antibacterial agents, and the antibacterial effect is more obvious, but the release duration of antibacterial agents is relatively short. Passive antibacterial titanium alloys exhibit an antibacterial effect by contact sterilization or inhibition of bacterial adhesion instead of releasing antibacterial agents. The antibacterial titanium alloy can inhibit the adhesion of bacteria on the surface of the material and prolong the service life of oral orthodontic appliances, implants and titanium plates. Moreover, the mechanical properties of the titanium alloy after antibacterial modification are not significantly affected, and the addition of antibacterial agents such as hydroxyapatite can increase the osteogenic function of the material. Therefore, the alloy has good application prospects in the fields of dental implant, orthodontic treatment and oral and maxillofacial surgery. However, most of the current studies on antibacterial titanium alloys are in vitro experiments, and their long-term clinical effects and antibacterial mechanisms are still unclear and need further study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA