Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. j. microbiol ; 42(3): 909-918, July-Sept. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-607519

RESUMEN

Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91) and xylanase (EC 3.2.1.8) during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus) on the surface and water-sediment interface (w-s interface) of an oxbow lagoon (Óleo lagoon) within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.


Asunto(s)
Agua Dulce/análisis , Ambiente Acuático/análisis , Carbono , Pruebas Enzimáticas Clínicas , Celulasa/análisis , Activación Enzimática , Macrófitas , Laguna Costera , Métodos , Métodos , Muestras de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA