Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of The Korean Society of Clinical Toxicology ; : 66-78, 2019.
Artículo en Coreano | WPRIM | ID: wpr-916477

RESUMEN

PURPOSE@#Thallium (TI+) autometallography is often used for the imaging of neuronal metabolic activity in the rodent brain under various pathophysiologic conditions. The purpose of this study was to apply a thallium autometallographic technique to observe changes in neuronal activity in the forebrain of rats following acute carbon monoxide (CO) intoxication.@*METHODS@#In order to induce acute CO intoxication, adult Sprague-Dawley rats were exposed to 1100 ppm of CO for 40 minutes, followed by 3000 ppm of CO for 20 minutes. Animals were sacrificed at 30 minutes and 5 days after induction of acute CO intoxication for thallium autometallography. Immunohistochemical staining and toluidine blue staining were performed to observe cellular damage in the forebrain following intoxication.@*RESULTS@#Acute CO intoxication resulted in significant reduction of TI+ uptake in major forebrain structures, including the cortex, hippocampus, thalamus, and striatum. In the cortex and hippocampal CA1 area, marked reduction of TI+ uptake was observed in the cell bodies and dendrites of pyramidal neurons at 30 minutes following acute CO intoxication. There was also strong uptake of TI+ in astrocytes in the hippocampal CA3 area following acute CO intoxication. However, there were no significant histological findings of cell death and no reduction of NeuN (+) neuronal populations in the cortex and hippocampus at 5 days after acute CO intoxication.@*CONCLUSION@#The results of this study suggest that thallium autometallography can be a new and useful technique for imaging functional changes in neural activity of the forebrain structure following mild to moderate CO intoxication.

2.
Journal of the Korean Balance Society ; : 142-151, 2018.
Artículo en Coreano | WPRIM | ID: wpr-761283

RESUMEN

OBJECTIVES: Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown. METHODS: Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats. RESULTS: Two or 3 types of unit could be classified according to the morphology of spikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. CONCLUSIONS: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.


Asunto(s)
Animales , Ratas , Presión Arterial , Encéfalo , Tronco Encefálico , Incendios , Hipotensión , Métodos , Neuronas , Nitroprusiato , Núcleos Vestibulares
3.
Journal of the Korean Balance Society ; : 75-82, 2015.
Artículo en Coreano | WPRIM | ID: wpr-761189

RESUMEN

OBJECTIVE: The cerebral cortex can modulate vestibular functions through direct control of neuronal activities in the vestibular nuclei. The purpose of this study was to investigate the effect of unilateral cortical lesion or cortical stimulation on static vestibular symptoms and vestibular nuclear activities at the acute stage of vestibular compensation following unilateral labyrinthectomy (UL) in rats. METHODS: The photothrombic ischemic injury using rose bengal was induced in the primary motor cortex or primary sensory cortex, and electrical stimulation was applied to the primary motor cortex, primary sensory cortex, or sencondary sensory cortex, respectively, in unilateral labyrinthectomized rats. Static vestibular symptoms including ocular movement and postural deficits, and expression of c-Fos protein in the medial vestibular nucleus (MVN) were measured. RESULTS: Lesion of the motor cortex produced a marked postural deficit with paralytic weakness in the hindlimb contralateral to UL. Number of spontaneous nystagmus in animals receiving cortical lesion was significantly increased 2, 6, and 12 hours after UL compared with animals being UL only. Lesion of the primary motor cortex or stimulation of the S2 sensory cortex decreased expression of c-Fos protein in MVN following UL compared with UL only group. Electrical stimulation of S2 sensory areas caused significant reduction of static vestibular symptoms and decreased expression of c-Fos protein in MVN 24 hours following UL. CONCLUSION: The present results suggest that cerebral cortex involves in recovery of static vestibular symptoms during vestibular compensation following UL.


Asunto(s)
Animales , Ratas , Corteza Cerebral , Compensación y Reparación , Estimulación Eléctrica , Miembro Posterior , Corteza Motora , Neuronas , Rosa Bengala , Núcleos Vestibulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA