RESUMEN
To enhance our comprehension of agriculture's role in addressing climate change, accurate assessment of its capacity for carbon sequestration is crucial. This assessment encompasses multiple considerations, including regional climate patterns, crop choices, soil management practices, and soil types. Climate change poses a significant threat to food and nutritional security on local, national, and global scales. The amplified concentrations of greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), present immediate challenges. Vulnerable populations, especially those in impoverished conditions, face heightened risk of food insecurity due to the impacts of climate change. Additionally, the conversion of non-agricultural land, like forests, into agricultural use, and human-generated emissions of greenhouse gases from agricultural activities significantly contribute to climate change. The escalating concentration of greenhouse gases, particularly CO2, in the atmosphere leads to global warming. Over the last century (1906–2005), the global mean surface temperature has risen by approximately 0.60 to 0.90°C, with the most rapid increase occurring in recent decades. The global average temperature continues to steadily climb and is projected to rise by 2°C by 2100, potentially resulting in significant global economic losses. The increasing concentration of CO2, a major greenhouse gas, is a cause for concern. This rise has fostered enhanced plant growth and productivity due to increased photosynthesis. However, the benefits of heightened photosynthesis are offset by higher temperatures, leading to increased crop respiration rates, greater evapotranspiration, heightened pest infestations, shifts in weed species, and reduced crop durations. This paper reviews the literature on climate change, its potential drivers, its effects on agriculture, and its influence on the physiological and metabolic processes of plants. It also explores potential and reported implications for plant growth, productivity, and mitigation strategies. In recent years, there has been a growing recommendation for the adoption of conservation agriculture as a more sustainable alternative to conventional farming practices. Conservation agriculture not only supports soil health but also enhances agricultural productivity, making it a crucial tool for mitigating the impacts of climate change.
RESUMEN
To safeguard soil, water, and air throughout intensive agricultural operations as well as significant industrial and transportation endeavors, it is imperative that the environment and agriculture are managed sustainably. Application of biochar might be a potential approach to solve these issues. The use of biochar (BC) in agricultural techniques and for environmental remediation has shown to offer a variety of benefits, despite certain drawbacks. Superior physicochemical characteristics of nanobiochar include strong catalytic activity, distinctive nanostructure, large specific surface area, and excellent mobility in soil environments. Nanobiochar is a prime contender for sustainable agriculture to pollution remediation and catalytic reactions. Despite growing interest in biochar research for agricultural and environmental uses, it is unclear how important nanobiochar is. So, in this study, we identified several fundamental uses of nanobiochar with an emphasis on its efficacy for environmentally and agriculturally sustainable practices.
RESUMEN
Phenolic compounds of nutraceutical importance viz., catechins (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) were estimated in fresh green tea shoots of Camellia sinensis (L) O Kuntze cultivar. The total polyphenols and total catechins were in the range of 219.90 to 317.81 and 140.83 to 271.39 g/kg, respectively in monthly samples of tea. The values of C, EC, EGC, EGCG and ECG in tea powders as analyzed through high performance liquid chromatography (HPLC) were in the range of 1.560 to 3.661, 13.338 to 27.766, 26.515 to 39.597, 62.903 to 102.168 and 18.969 to 39.469 mg/g, respectively. Effect of tea extracts and standard flavanols against five pathogenic bacteria viz., Listeria monocytogenes (MTCC-839), Pseudomonas aeruginosa (MTCC-741), Bacillus cereus (MTCC-1272), Staphylococcus aureus (MTCC-96) and Escherichia coli (MTCC-443), and eleven indigenous potential bacterial probiotics belonging to genera Enterococcus, Bacillus and Lactobacillus spp. obtained from fermented foods of Western Himalayas, was investigated. EGCG, ECG and EGC exhibited antibacterial activity but, C and EC did not show this activity. Tea extracts having high concentrations of EGCG and ECG were more potent in antibacterial action against bacterial pathogens. Tea extracts and standard flavan-3-ols augmented viability of potential probiotics in an order of EGCG > EGC > ECG > EC > C. Tea extracts and standard flavanols had no antibacterial activity against Escherichia coli (MTCC-443) but, in combination with probiotic culture supernatants, this activity was seen. The Kangra tea thus, exerts antibacterial effect on bacterial pathogens through EGCG, ECG and EGC constituents while stimulatory effect on growth of indigenous potential probiotics.