Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 270-5, 2014.
Artículo en Inglés | WPRIM | ID: wpr-636686

RESUMEN

Aqueous dispersion and stability of Fe3O4 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe3O4 super-paramagnetic nanoparticles which were modified by three kinds of materials [DSPE-MPEG2000, TiO2 and poly acrylic acid (PAA)] and further detected their characteristics. Transmission electron microscopy (TEM) clearly showed sizes and morphology of the four kinds of nanoparticles. X-ray diffraction (XRD) proved successfully coating of the three kinds of nanoparticles and their structures were maintained. Vibrating sample magnetometer (VSM) verified that their magnetic properties fitted for the super-paramagnetic function. More importantly, the particle size analysis indicated that Fe3O4@PAA had a better size distribution, biocompatibility, stability and dispersion than the other two kinds of nanoparticles. In addition, using CNE2 cells as a model, we found that all nanoparticles were nontoxic. Taken together, our data suggest that Fe3O4@PAA nanoaparticles are superior in the application of biomedical field among the four kinds of Fe3O4 nanoparticles in the future.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 270-275, 2014.
Artículo en Inglés | WPRIM | ID: wpr-351084

RESUMEN

Aqueous dispersion and stability of Fe3O4 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe3O4 super-paramagnetic nanoparticles which were modified by three kinds of materials [DSPE-MPEG2000, TiO2 and poly acrylic acid (PAA)] and further detected their characteristics. Transmission electron microscopy (TEM) clearly showed sizes and morphology of the four kinds of nanoparticles. X-ray diffraction (XRD) proved successfully coating of the three kinds of nanoparticles and their structures were maintained. Vibrating sample magnetometer (VSM) verified that their magnetic properties fitted for the super-paramagnetic function. More importantly, the particle size analysis indicated that Fe3O4@PAA had a better size distribution, biocompatibility, stability and dispersion than the other two kinds of nanoparticles. In addition, using CNE2 cells as a model, we found that all nanoparticles were nontoxic. Taken together, our data suggest that Fe3O4@PAA nanoaparticles are superior in the application of biomedical field among the four kinds of Fe3O4 nanoparticles in the future.


Asunto(s)
Compuestos Férricos , Química , Nanopartículas de Magnetita , Química , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Agua , Química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA