Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | IMSEAR | ID: sea-176368

RESUMEN

Background & objectives: Leprosy type 1 reactions (T1R) are acute episodes of immune exacerbation that are a major cause of inflammation and nerve damage. T1R are diagnosed clinically and supported by histopathology. No laboratory marker is currently available that can accurately predict a T1R. Increased plasma and tissue expression of inducible nitric oxide synthase (i-NOS) and chemokine CXCL10 have been demonstrated in T1R. We studied the gene expression and immunoexpression of i-NOS, CXCL10 and its receptor CXCR3 in clinically and histopathologically confirmed patients with T1R and compared with non-reactional leprosy patients to understand which biomarker has better potential in distinguishing reaction from non-reaction. Methods: Gene expression of i-NOS, CXCL10 and CXCR3 was studied in 30 skin biopsies obtained from patients with borderline tuberculoid (BT), mid-borderline (BB) and borderline lepromatous (BL) leprosy with and without T1R by real-time PCR. Further validation was done by immunhistochemical expression on 60 borderline leprosy biopsies with and without T1R. Results: Of the 120 patients histopathological evaluation confirmed T1R in 65 (54.2%) patients. CXCR3 gene expression was significantly (P<0.05) higher in BT- and BB-T1R patients compared to those without T1R. The CXCL10 gene expression was significantly higher (P<0.05) in BB leprosy with T1R but the difference was not significant in patients with BT with or without T1R. Immunoexpression for CXCR3 was significant in both BB-T1R and BB (P<0.001) and BT and BT-T1R (P<0.001). Immunoexpression of CXL10 was significant only in differentiating BB from BB-T1R leprosy (P<0.01) and not the BT cases. i-NOS immunoexpression was not useful in differentiating reactional from non-reactional leprosy. Interpretation & conclusions: Both CXCL10 and CXCR3 appeared to be useful in differentiating T1R reaction in borderline leprosy while CXCR3 alone differentiated BT from BT-T1R. CXCR3 may be a potentially useful immunohistochemical marker to predict an impending T1R.

2.
Artículo en Inglés | IMSEAR | ID: sea-155232

RESUMEN

Background & objectives: Genetic polymorphisms in glutathione-S-transferase genes (GSTM1 and GSTT1) have been studied intensively for their potential role in lung cancer susceptibility. However, most of the studies on association between the polymorphisms and lung cancer do not distinguish between genotypes with one or two copies of the genes. The present study investigates the gene dosage effects of GSTT1 and GSTM1 copy number and their environmental interactions to examine the association of lung cancer risk with trimodular genotypes of the GSTs in a high-risk population from north-east India. Methods: A total of 154 lung cancer cases and 154 age and sex matched controls from the high risk region of north-east India were analyzed by multiplex real-time PCR to determine the trimodal genotypes (+/+, +/- and -/-) in both the genes (GSTM1 and GSTT1). Results: No significant association and gene dosage effect of GSTM1 gene copy number with lung cancer risk (Ptrend=0.13) were found. However, absence of GSTT1 conferred 68 per cent (OR=0.32;95%CI=0.15-0.71;P=0.005) reduced risk compared to the two copy number of the gene. tThere was evidence of gene dosage effect of GSTT1 gene (Ptrend=0.006). Tobacco smoking was a major environmental risk factor to lung cancer (OR=3.03;95%CI=1.73-5.31;P<0.001). However, its interaction with null genotype of GSTT1 conferred significant reduced risk to lung cancer (OR=0.30;95%CI=0.10-0.91;P=0.03). Further in only tobacco smokers, null genotype was associated with increased reduced risk [0.03(0.001-0.78)0.03; Ptrend=0.006]. No effect modification of GSTM1 was observed with lung cancer risk by environmental risk factors. Interpretation & conclusions: The results suggest that absence of GSTT1 null genotype may be associated with a reduced risk of lung cancer and the effect remains unchanged after interaction with smoking.

3.
Artículo en Inglés | IMSEAR | ID: sea-144790

RESUMEN

Background & objectives: Prostate cancer (CaP) is the fifth most common cancer among Indian men. Tumour protein p53 (TP53) gene increases the fidelity of DNA replication and homologous recombination by transcriptional transactivation of mismatch repair (MMR) genes. DNA repair thus has a potential role in molecular carcinogenesis of CaP. The aim of the present study was to identify mutations, and polymorphisms in TP53 gene and MMR protein expression in CaP in Indian male population. Methods: TP53 codon 72 polymorphism was analysed in 105 CaP, 120 benign prostatic hyperplasia (BPH) cases and 106 normal controls. Mutational analysis of TP53 was done in DNA extracted from formalin fixed paraffin embedded tissue of 80 CaP and 24 BPH cases. Expression of MMR proteins viz. hMLH1, hMSH2, hPMS1 and hPMS2 was studied in 80 CaP, 15 prostatic intraepithelial neoplasia (PIN) and 15 BPH cases. Results: A somatic C/A variation at the intronic boundary of exon 7 in TP53 gene was observed in one each biopsy samples from CaP and BPH. A significant association of codon 72 TP53 Pro/Pro genotype was observed with the risk of CaP (OR, 2.59, P=0.02) and BPH (OR, 6.27, P<0.001). Immunohistochemical analysis of MMR proteins showed maximum loss of hPMS1 expression in cases of CaP and PIN while no loss in expression of MMR proteins was observed in BPH cases. The study also identified a significant loss of hPMS2 protein in poorly differentiated tumours (Gleason score >7) than in well differentiated tumours (Gleason score 3-6) (P<0.05). Interpretation & conclusions: The results of the present study demonstrate that TP53 codon 72 polymorphism plays significant role in the pathogenesis and susceptibility to CaP and BPH. Also, an aberrant MMR protein expression could be involved in progression of prostate cancer through PIN, early CaP to aggressive CaP. The loss of hPMS2 protein expression may serve as a marker for progression of CaP.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Reparación del ADN/genética , Humanos , India , Masculino , Proteína 2 Homóloga a MutS/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo Genético , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA