Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Stomatology ; (12): 469-473, 2009.
Artículo en Chino | WPRIM | ID: wpr-274549

RESUMEN

<p><b>OBJECTIVE</b>To investigate the effects of resveratrol (RES) on apoptosis of human periodontal ligament cells (HPLC).</p><p><b>METHODS</b>HPLC were subjected to oxidative injury induced by H2O2 for 24 h after pretreatment with different concentration of RES. HPLC were then divided into the control, model, vector, RES 1, 10, 30, 50 micromol/L treatment group. The viability of the HPLC was determined by methyl thiazolyl tetrazolium (MTT) method. Lactate dehydrogenase (LDH) rate and malondialdehyde (MDA) in the culture medium, superoxide dismutase (SOD) in the HPLC homogenate were evaluated by spectrophotometry. The apoptotic HPLC was detected by flow cytometry (FCM) and calculated by relative apoptosis rate. Bax and Bcl-2 protein levels were detected by Western blotting.</p><p><b>RESULTS</b>RES increased the cell survival rate after H2O2 injury. The survival rate of RES 30 micromol/L group was (86.1 +/- 4.1)% and the model group was (54.6 +/- 4.0)%, which was significantly different between the two groups (P < 0.01). The LDH leakage rate and MDA content of the RES 30 micromol/L group were (32.6 +/- 2.0)% and (1.70 +/- 0.21) micromol/L, which were significantly different with that in the model group (P < 0.01). At the same time RES could remarkably restore the vitality of SOD in the HPLC. RES increased Bcl-2 and reduced the expression of Bax protein. The apoptosis rate of the RES 30 micromol/L group and model group was (14.84 +/- 1.36)% and (64.37 +/- 2.34)%, respectively (P < 0.01). The protective effect of RES on the cell apoptosis was in a dose-dependent manner, reaching peak at a concentration of 30 micromol/L (P < 0.01).</p><p><b>CONCLUSIONS</b>RES reduced oxidative stress and apoptosis in an experimental HPLC injury model induced by H2O2. RES plays a key role in the HPLC protection against oxidative injury.</p>


Asunto(s)
Humanos , Apoptosis , Supervivencia Celular , Citometría de Flujo , Peróxido de Hidrógeno , Técnicas In Vitro , L-Lactato Deshidrogenasa , Malondialdehído , Oxidantes , Estrés Oxidativo , Ligamento Periodontal , Biología Celular , Estilbenos , Farmacología , Superóxido Dismutasa , Proteína X Asociada a bcl-2
2.
West China Journal of Stomatology ; (6): 157-159, 2009.
Artículo en Chino | WPRIM | ID: wpr-248284

RESUMEN

<p><b>OBJECTIVE</b>To compare the adaptation of porcelain fused-to-metal (PFM) restorations made from Ni-Cr alloy, precious alloy and galvanized forming copings after cementation and to provide a theory guidance for their application.</p><p><b>METHODS</b>Three kinds of crowns (Ni-Cr alloy, precious alloy and galvanized forming) were manufactured and cleaned by ultrasonic vibrate with alcoholic solution for 5 minutes, and cemented on their dies as their order. All the crowns were cemented by polycarboxylate zinc-cement and maintained 10 minutes. After coated in the center of methyl acrylic resins, all the samples were cut vertically along buccolingual direction. The cement thickness of PFM was measured by scanning electron microscope and the data were analyzed by multivariate ANOVA.</p><p><b>RESULTS</b>No significant difference was found between the cement thickness of precious alloy crown and galvanized forming crown (P>0.05), while both of these two kinds of crown had significant differences in cement thickness with Ni-Cr crown (P<0.05).</p><p><b>CONCLUSION</b>The adaptation of precious alloy crown and galvanized forming crown are superior to Ni-Cr crown.</p>


Asunto(s)
Cementación , Coronas , Cementos Dentales , Porcelana Dental , Cementos de Ionómero Vítreo , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA