Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Indian J Exp Biol ; 2010 Aug; 48(8): 837-842
Artículo en Inglés | IMSEAR | ID: sea-145038

RESUMEN

The present work was undertaken with a view to study the effect of oral feeding of 2% Aloe vera gel extract (AGE) for 30 days on azoxymethane (AOM)-induced oxidative stress in rats. It was observed that AOM administration resulted in a significant increase in malondialdehyde and conjugated dienes, with reduction in hepatic glutathione (GSH), vitamin A and uric acid contents. AOM-induced reduction in hepatic GSH and uric acid was brought back to normal by AGE. There was a significant raise in hepatic catalase, superoxide dismutase and glucose-6-phosphate dehydrogenase (G-6-PD) activities as a result of feeding of the extract. Ingestion of the extract effected reduction in AOM-induced colonic GSH-peroxidase, G-6- PD and glutathione S-transferase and femur bone marrow micronuclei formation. Hence, it is suggested that Aloe vera gel extract possess the ability to reduce AOM- induced oxidative stress and toxicity in liver.

2.
Indian J Exp Biol ; 2004 Jun; 42(6): 595-600
Artículo en Inglés | IMSEAR | ID: sea-59000

RESUMEN

Effect of prefeeding dehydrated amaranth (A. gangeticus) leaves at 10 and 20% levels on a chemical toxicant, dimethylhydrazine (DMH)-induced free radical stress in rat liver was evaluated. DMH-induced rise in hepatic malondialdehyde (MDA), was diminished by AL. AL intake resulted in a significant increase in hepatic glutathione (GSH). The feeding of AL at 10% level increased the hepatic glucose-6-phosphate dehydrogenase (G-6-PDH) activity, while that at 20% level increased the hepatic glutathione reductase (GSSGR) as well, in addition to G-6-PDH. Amaranth leaves at 10 and 20% levels of feeding diminished the hepatic superoxide dismutase and glutathione peroxidase (GSH-Px) activities. DMH influenced adversely the hepatic antioxidant enzyme activities. Simultaneous administration of DMH and feeding of AL enhanced the DMH-induced decrease in hepatic GSH-Px. DMH enhanced formation of micronuclei was reverted significantly by AL intake. Hence, it was concluded that the consumption of AL at 20% level reduced DMH-induced impaired antioxidant status in rat liver.


Asunto(s)
Amaranthus/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal , Médula Ósea/metabolismo , Colon/metabolismo , Dimetilhidrazinas/farmacología , Radicales Libres , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Peroxidación de Lípido , Hígado/enzimología , Masculino , Malondialdehído/farmacología , Micronúcleos con Defecto Cromosómico/metabolismo , Tamaño de los Órganos , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA