Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Nutrition Research and Practice ; : 282-287, 2016.
Artículo en Inglés | WPRIM | ID: wpr-138391

RESUMEN

BACKGROUND/OBJECTIVES: Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). MATERIALS/METHODS: The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. RESULTS: The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. CONCLUSIONS: These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.


Asunto(s)
Animales , Ratones , Bacillus subtilis , Glucemia , Peso Corporal , Colesterol , HDL-Colesterol , Diabetes Mellitus , Diabetes Mellitus Tipo 2 , Suplementos Dietéticos , Ingestión de Alimentos , Ayuno , Ácidos Grasos , Fermentación , Helianthus , Técnicas In Vitro , Insulina , Lactobacillus , Lactobacillus plantarum , Modelos Animales , Polimerizacion , Polímeros , Triglicéridos , Agua
2.
Nutrition Research and Practice ; : 282-287, 2016.
Artículo en Inglés | WPRIM | ID: wpr-138390

RESUMEN

BACKGROUND/OBJECTIVES: Jerusalem artichoke has inhibitory activity against α-glucosidase and decreases fasting serum glucose levels, which may be related to its fructan content. The biological activity of fructan can be influenced by the degree of polymerization. Thus, in this study, the inhibitory effects of original and fermented purple Jerusalem artichoke (PJA) on α-glucosidase were compared in vitro. Additionally, the anti-diabetes effect of Lactobacillus plantarum-fermented PJA (LJA) was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db). MATERIALS/METHODS: The water extract of PJA was fermented by L. plantarum, and two strains of Bacillus subtilis to compare their anti-α-glucosidase activities in vitro by α-glucosidase assays. The anti-diabetes effect of LJA was studied in a non-insulin-dependent diabetes mellitus animal model (C57BIKsJ db/db) for seven weeks. During the experiment, food intake, body weight, and fasting blood glucose were measured every week. At the end of the treatment period, several diabetic parameters and the intestinal α-glucosidase activity were measured. RESULTS: The LJA showed the highest α-glucosidase inhibitory activity in vitro. In the in vivo study, it resulted in a significantly lower blood glucose concentration than the control. Serum insulin and HDL cholesterol levels were significantly higher and the concentrations of triglycerides, non-esterified fatty acids, and total cholesterol were significant lower in mice treated with LJA after seven weeks. In addition, the intestinal α-glucosidase activity was partially inhibited. CONCLUSIONS: These results suggested that LJA regulates blood glucose and has potential use as a dietary supplement.


Asunto(s)
Animales , Ratones , Bacillus subtilis , Glucemia , Peso Corporal , Colesterol , HDL-Colesterol , Diabetes Mellitus , Diabetes Mellitus Tipo 2 , Suplementos Dietéticos , Ingestión de Alimentos , Ayuno , Ácidos Grasos , Fermentación , Helianthus , Técnicas In Vitro , Insulina , Lactobacillus , Lactobacillus plantarum , Modelos Animales , Polimerizacion , Polímeros , Triglicéridos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA