Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental Neurobiology ; : 537-546, 2019.
Artículo en Inglés | WPRIM | ID: wpr-763774

RESUMEN

Silent information regulator 2 (Sirtuin2 / SIRT2) is a NAD⁺-dependent deacetylase that regulates the cellular oxidative stress response. It modulates transcriptional silencing and protein stability through deacetylation of target proteins including histones. Previous studies have shown that SIRT2 plays a role in mood disorders and hippocampus-dependent cognitive function, but the underlying neurobiological mechanism is poorly understood. Here, we report that chronic stress suppresses SIRT2 expression in the hippocampus. Molecular and biochemical analyses indicate that the stress-induced decrease in the SIRT2 expression downregulates synaptic plasticity-related genes in the hippocampus through the increase of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2) (also known as G9a). shRNA-mediated knockdown of SIRT2 in the dentate gyrus alters the expression of synaptic plasticity-related genes in a way similar to those induced by chronic stress, and produces depression-like behaviors. Our results indicate that SIRT2 plays an important role in the response to stress, thereby modulating depression-like behaviors.


Asunto(s)
Cognición , Giro Dentado , Depresión , Regulación hacia Abajo , Hipocampo , N-Metiltransferasa de Histona-Lisina , Histonas , Trastornos del Humor , Plasticidad Neuronal , Estrés Oxidativo , Estabilidad Proteica , Regulación hacia Arriba
2.
Experimental & Molecular Medicine ; : e455-2018.
Artículo en Inglés | WPRIM | ID: wpr-914301

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered gene expression related to synaptic plasticity. We found that capsaicin treatment resulted in upregulation of histone deacetylase 2 (HDAC2) in the mouse hippocampus and HDAC2 was enriched at Psd95, synaptophysin, GLUR1, GLUR2 promoters. Viral-mediated hippocampal knockdown of HDAC2 induced expression of Synapsin I and prevented the detrimental effects of capsaicin on Synapsin I expression in mice, supporting the role of HDAC2 in regulation of capsaicin-induced Synapsin I expression. Taken together, our findings implicate HDAC2 in capsaicin-induced transcriptional regulation of synaptic molecules and support the view that HDAC2 is a molecular link between TRPV1 activity and synaptic plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA