Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Physiologica Sinica ; (6): 714-726, 2023.
Artículo en Chino | WPRIM | ID: wpr-1007786

RESUMEN

Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.


Asunto(s)
Embarazo , Femenino , Humanos , Placenta , Retardo del Crecimiento Fetal/etiología , Preeclampsia/patología , Especies Reactivas de Oxígeno , Hipoxia/patología , Complicaciones del Embarazo/patología , Estrés del Retículo Endoplásmico
2.
Acta Physiologica Sinica ; (6): 235-239, 2017.
Artículo en Chino | WPRIM | ID: wpr-348279

RESUMEN

High altitude hypoxia is an important factor to affect fetal development during pregnancy. In the special environment, maternal physiological functions are regulated to maintain the maternal and fetal homeostasis, so that limited oxygen is to meet the needs of fetal growth and development. In this review, the literatures about the effects of hypoxic environment on fetal development during pregnancy in recent years were summarized, in which the fetal growth characteristics, maternal physiological regulation, genetic and placental influencing factors in high altitude areas were involved. This may be helpful for the reproductive healthcare of women in high altitude region, and also for the treatment and prevention of fetal growth retardation in the hypoxic environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA