Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta cir. bras ; 37(6): e370606, 2022. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1402960

RESUMEN

Purpose: Spontaneous intracerebral hemorrhage (ICH) is still a major public health problem, with high mortality and disability. Ulinastatin (UTI) was purified from human urine and has been reported to be anti-inflammatory, organ protective, and antioxidative stress. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. In the present study, we aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced early brain injury in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine levels, oxidative stress levels, and neuronal damage were evaluated. Results: UTI treatment markedly increased the neurological score, alleviated brain edema, decreased the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and NF-κB, decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and upregulated the levels of glutathione (GSH), superoxide dismutase (SOD), and Nrf2. This finding indicated that UTI-mediated inhibition of neuroinflammation and oxidative stress alleviated neuronal damage after ICH. The neuroprotective capacity of UTI is partly dependent on the ROS/MAPK/Nrf2 signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation and oxidative stress.


Asunto(s)
Animales , Ratones , Inhibidores de Proteasas/administración & dosificación , Lesiones Encefálicas/veterinaria , Hemorragia Cerebral/veterinaria , Estrés Oxidativo , Enfermedades Neuroinflamatorias
2.
Acta cir. bras ; 36(10): e361002, 2021. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1349867

RESUMEN

ABSTRACT Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. Methods: In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). Results: The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. Conclusions: CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.


Asunto(s)
Animales , Ratones , Fármacos Neuroprotectores/farmacología , Necroptosis , Transducción de Señal , Hemorragia Cerebral/tratamiento farmacológico , Apoptosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neuroprotección , Glucógeno Sintasa Quinasa 3 beta/farmacología , Aminoácidos , Ratones Endogámicos C57BL , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA