Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Biomedical and Environmental Sciences ; (12): 219-229, 2010.
Artículo en Inglés | WPRIM | ID: wpr-360599

RESUMEN

<p><b>OBJECTIVE</b>To find a sensitive cytotoxic response to reflect the bio-toxicity of trace organic pollutants, the sensitivity and reliability of morphological change and proliferation inhibition of Vero cells exposed to 2, 4, 6-trichlorophenol (TCP) and the leachate from products related to drinking water (PRDW) were compared, and the mechanism of the morphological change in Vero cells exposed to chemical pollutants was studied.</p><p><b>METHODS</b>Vero cells were treated by different concentration of TCP and the leachate from PRDW. Methylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT) assay was carried out for proliferation inhibition. Bioluminescence method was carried out as another method to test the toxicity of TCP. Flow Cytometry assay was used to test cell Apoptosis and damage of cell-membrane.</p><p><b>RESULTS</b>0.25 mg/L TCP had an effect on cell morphology, and the proportion of morphologically changed cells increased with increasing TCP concentration. At low TCP concentrations, inhibition of cell proliferation did not seem to correlate to TCP concentration, and was negative when TCP concentration was <1.0 mg/L. After exposure to leachate from PRDW extracted at different temperatures, the percentage of morphologically changed cells increased with extracting temperature, but the inhibition of cell proliferation failed to reflect the correlation between extracting temperature and proliferation inhibition of Vero cells. Although the Sensitivity of bioluminescence method seems to be similar to morphological change in Vero cells, the bacterial in this method is not homologous enough with human body cells to reflect the toxicity to human body. These imply cell morphological change is a more sensitive and reliable method to reflect bio-toxicity of organic pollutants than proliferation inhibition. Flow cytometry analysis and cell rejuvenation experiments indicated cell membrane damage, which results in cell morphological change, was an early and sensitive cytotoxic response comparing with necrosis.</p><p><b>CONCLUSION</b>These results indicated that the cell membrane toxicity represented by morphological changes is a more sensitive and reliable method to indicate the composite bio-toxicity of trace chemicals than proliferation inhibition, inhibition on bioluminescence and necrosis. Nevertheless, the quantification of morphological change should be studied further.</p>


Asunto(s)
Animales , División Celular , Supervivencia Celular , Chlorocebus aethiops , Células Vero , Contaminantes Químicos del Agua , Toxicidad
2.
Asian Journal of Andrology ; (6): 321-329, 2007.
Artículo en Inglés | WPRIM | ID: wpr-310507

RESUMEN

<p><b>AIM</b>To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0.</p><p><b>METHODS</b>In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis.</p><p><b>RESULTS</b>The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots).</p><p><b>CONCLUSION</b>The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.</p>


Asunto(s)
Adulto , Humanos , Masculino , Electroforesis en Gel de Poliacrilamida , Métodos , Fertilidad , Fisiología , Proteínas , Proteoma , Proteómica , Métodos , Valores de Referencia , Semen , Química , Espectrometría de Masa por Ionización de Electrospray , Bancos de Esperma , Espermatozoides , Química , Espectrometría de Masas en Tándem , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA