RESUMEN
Resumo Fundamento A doença arterial coronariana (DAC) devido à isquemia miocárdica causa perda permanente de tecido cardíaco. Objetivos Nosso objetivo foi demonstrar o possível dano ao miocárdio em nível molecular através dos mecanismos de autofagia e apoptose em pacientes submetidos à cirurgia de revascularização miocárdica. Métodos Um grupo recebeu uma solução de cardioplegia Custodiol e o outro grupo uma solução de cardioplegia sanguínea. Duas amostras miocárdicas foram coletadas de cada paciente durante a operação, imediatamente antes da parada cardíaca e após a liberação do pinçamento aórtico. Foram avaliadas as expressões de marcadores de autofagia e apoptose. O nível de significância estatística adotado foi de 5%. Resultados A expressão do gene BECLIN foi significativa nos tecidos miocárdicos do grupo CS (p=0,0078). Os níveis de expressão dos genes CASPASE 3, 8 e 9 foram significativamente menores no grupo CC. Os níveis pós-operatórios de TnT foram significativamente diferentes entre os grupos (p=0,0072). As expressões dos genes CASPASE 8 e CASPASE 9 foram semelhantes antes e depois do pinçamento aórtico (p=0,8552, p=0,8891). No grupo CC, os níveis de expressão gênica de CASPASE 3, CASPASE 8 e CASPASE 9 não foram significativamente diferentes em amostras de tecido coletadas após pinçamento aórtico (p=0,7354, p=0,0758, p=0,4128, respectivamente). Conclusões Com nossos achados, acreditamos que as soluções CC e CS não apresentam diferença significativa em termos de proteção miocárdica durante as operações de by-pass.
Abstract Background Coronary artery disease (CAD) due to myocardial ischemia causes permanent loss of heart tissue. Objectives We aimed to demonstrate the possible damage to the myocardium at the molecular level through the mechanisms of autophagy and apoptosis in coronary bypass surgery patients. Methods One group was administered a Custodiol cardioplegia solution, and the other group was administered a Blood cardioplegia solution. Two myocardial samples were collected from each patient during the operation, just before cardiac arrest and after the aortic cross-clamp was released. The expressions of autophagy and apoptosis markers were evaluated. The level of statistical significance adopted was 5%. Results The expression of the BECLIN gene was significant in the myocardial tissues in the BC group (p=0.0078). CASPASE 3, 8, and 9 gene expression levels were significantly lower in the CC group. Postoperative TnT levels were significantly different between the groups (p=0.0072). CASPASE 8 and CASPASE 9 gene expressions were similar before and after aortic cross-clamping (p=0.8552, p=0.8891). In the CC group, CASPASE 3, CASPASE 8, and CASPASE 9 gene expression levels were not found to be significantly different in tissue samples taken after aortic cross-clamping (p=0.7354, p=0.0758, p=0.4128, respectively). Conclusions With our findings, we believe that CC and BC solutions do not have a significant difference in terms of myocardial protection during bypass operations.
RESUMEN
Abstract Introduction: Endothelial progenitor cells (EPCs) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme activity may affect the vessel wall and have a role in development of aortic aneurysms. EPCs originate from hematopoietic stem cells and can be enumerated from peripheral blood samples by flow cytometry. In this study, we aimed to evaluate the relation of EPC number and NADPH oxidase enzyme activity in the development of thoracic aortic aneurysm (TAA). Methods: Patients with TAA (n=30) and healthy individuals without TAA (control, n=10) were included in our study. Characterization and enumeration of EPC from peripheral blood samples were performed by flow cytometry with panels including markers of EPCs (CD34/CD133/CD309/CD146/CD144). Additionally, NADPH oxidase enzyme activity (capacity) was also measured by the dihydrorhodamine 123 (DHR 123) test. Results: The enumeration of EPC with CD34+/CD146+ marker showed that the number of mean EPC/106 cells was increased in the patient group (41.5/106 cells), but not in the control group (20.50/105 cells) (P<0.01). Additionally, patients with TAA presented significantly lower NADPH oxidase activity by DHR assay than healthy controls (mean stimulation index: 60.40± 7.86 and 75.10±5.21, respectively) (P<0.01). Conclusion: Our results showed that the number of EPCs is significantly higher in aortic aneurysm patients and may have a role in disease progression. The crosstalk between NADPH oxidase enzyme capacity and EPC number may be useful as a parameter to explain the clinical progression of TAA.
RESUMEN
Abstract Introduction: Cardiopulmonary bypass (CPB) is associated with hyperlactatemia, which leads to adverse clinical outcomes. No study has examined the effect of different clamping techniques on postoperative hyperlactatemia (PHL). Thus, we aimed to evaluate the impact of two different techniques on PHL and the clinical outcomes in patients undergoing isolated coronary artery bypass surgery. Methods: This retrospective study included 100 patients who underwent isolated CPB either with single clamp technique (SCT, n=47) or double clamp technique (DCT, n=53). Demographic and preoperative laboratory data, as well as operative features and arterial blood lactate levels at the onset and at the end of CPB, were collected from patient charts. Results: Blood lactate levels collected at the end of CPB did not differ significantly between groups whereas intraoperative lactate increased significantly in both groups (P<0.005). PHL developed in 16 patients (32%). There was no meaningful difference in SCT and DCT in this regard. Left internal mammary artery was used more frequently in the DCT group than in the SCT group. While the cross-clamp time was significantly longer in the SCT group, there was no difference regarding CPB time. Among postoperative complications, only the incidence of stroke was significantly higher in the DCT group than in the SCT group (10.6% vs. 0%, P=0.020). CPB time, cross-clamp time and numbers of proximal saphenous graft and distal anastomosis showed a significant positive correlation with the postoperative lactate level. In the regression analysis, CPB time emerged as the only independent predictor of PHL (OR 1.04, CI 95% 1.01-1.07, P=0.011). Conclusion: There was no difference in postoperative blood lactate levels between SCT and DCT groups.
RESUMEN
Abstract Introduction: Blood cardioplegia (BC) and Custodiol cardioplegia (CC) have been used for a long time in open heart surgery and are highly effective solutions. The most controversial issue among these two is whether there is any difference between them regarding myocardial damage after ischemia surgery. In this study, autophagy, apoptosis, and hypoxia markers were investigated and that way we evaluated the differences between BC and CC patients. Methods: A total of 30 patients were included in this study, using two different cardioplegic solutions. Three different whole blood samples of the patients were taken from a central vein (preoperatively, immediately postoperatively, and one day after surgery). Total ribonucleic acid was extracted from these samples. Quantitative real-time polymerase chain reaction was performed, and changes in gene expression were determined by the 2-∆∆Ct method of relative quantification. Results: In the CC group, Beclin gene expression level was found to be higher and this difference was statistically significant (P=0.0024). Similarly, cysteine-aspartic acid protease (caspase) 9 and hypoxia-inducible factor 1α messenger ribonucleic acid (mRNA) gene expression level increased and were significantly different in the CC group. In the BC group, Beclin and microtubule-associated protein light chain 3 expressions were higher in the samples taken one day after surgery. Caspases 3 and 8 gene expressions were significantly different in the BC group. Conclusion: As a result of the analysis performed between the two cardioplegia groups, it has been shown that CC harms the myocardium more than BC at the level of mRNA expression of related markers.