Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Genomics & Informatics ; : e5-2023.
Artículo en Inglés | WPRIM | ID: wpr-976799

RESUMEN

Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

2.
Genomics & Informatics ; : e47-2022.
Artículo en Inglés | WPRIM | ID: wpr-966851

RESUMEN

Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection innosocomial settings. As reported by the World Health Organization, carbapenem-resistantEnterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgentthreat, and the greatest concern is that these bacterial pathogens may acquire genetictraits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expandantibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells;however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation proteindomain, suggesting a new potential site as a drug target. DNA methylation regulates theattenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could bea novel antibiotic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA