Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Electron. j. biotechnol ; 41: 81-87, sept. 2019. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1087242

RESUMEN

Background: The search for innovative anti-tubercular agents has received increasing attention in tuberculosis chemotherapy because Mycobacterium tuberculosis infection has steadily increased over the years. This underlines the necessity for new methods of preparation for polymer-drug adducts to treat this important infectious disease. The use of poly(ethylene glycol)(PEG) is an alternative producing anti-tubercular derivatives. However, it is not yet known whether PEGylated isonicotinylhydrazide conjugates obtained by direct links with PEG are useful for therapeutic applications. Results: Here, we synthesized a PEGylated isoniazid (PEG-g-INH or PEG­INH) by gamma radiation-induced polymerization, for the first time. The new prodrugs were characterized using Raman and UV/Vis spectrometry. The mechanism of PEGylated INH synthesis was proposed. The in vitro evaluation of a PEGylated isonicotinylhydrazide macromolecular prodrug was also carried out. The results indicated that PEG­INH inhibited the bacterial growth above 95% as compared with INH, which showed a lower value (80%) at a concentration of 0.25 µM. Similar trends are observed for 0.1, 1, and 5 µM. Conclusions: In summary, the research suggests that it is possible to covalently attach the PEG onto INH by the proposed method and to obtain a slow-acting isoniazid derivative with little toxicity in vitro and higher antimycobacterial potency than the neat drug.


Asunto(s)
Polietilenglicoles/química , Isoniazida/química , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Polietilenglicoles/farmacología , Polímeros , Espectrometría Raman , Técnicas In Vitro , Profármacos , Polimerizacion , Rayos gamma , Isoniazida/farmacología , Antituberculosos/farmacología
2.
Int. j. morphol ; 32(4): 1347-1356, Dec. 2014. ilus
Artículo en Inglés | LILACS | ID: lil-734682

RESUMEN

Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyvinyl alcohol-epichlorohydrin (CS-PVA-ECH) hydrogel to propose this material as a scaffold for tissue engineering application. After being cultured onto CS-PVA-ECH hydrogels, auricular chondrocytes viability was up to 81%. SEM analysis showed cell attachment and extracellular matrix formation that was confirmed by IF detection of type II collagen and elastin, the main constituents of elastic cartilage. Expression of elastic cartilage molecular markers during in vitro expansion and during culture onto hydrogels allowed confirming auricular chondrocyte phenotype. In vivo assay of tissue formation revealed generation of neotissues with similar physical characteristics and protein composition to those found in elastic cartilage. According to our results, biocompatibility of the CS-PVA-ECH hydrogel makes it a suitable scaffold for tissue engineering application aimed to elastic cartilage regeneration.


La ingeniería de tejidos (TE) es una alternativa para la reconstrucción auricular basada en la combinación de células, señales moleculares y biomateriales. Los andamios fabricados con biomateriales brindan un soporte estructural que favorece la adhesión cellular y el desarrollo del tejido. Un andamio debe poseer características como biocompatibilidad y bioactividad para soportar adecuadamente funciones celulares. Nuestro objetivo fue evaluar la biocompatibilidad de condrocitos auriculares de microtia cultivados sobre un hidrogel a base de quitosano-alcohol polivinílico-epiclorhidrina (CS-PVA-ECH) y proponerlo como andamio con aplicaciones en ingeniería de tejidos. La viabilidad de los condrocitos auriculares es superior al 81% después de ser cultivados sobre el hidrogel. El análisis por SEM reveló la unión celular y formación de matriz extracellular sobre el hidrogel; confirmada mediante detección por IF de colágena tipo II y elastina. La expresión de marcadores moleculares durante la expansión in vitro y el cultivo sobre los hidrogeles confirmaron el fenotipo condral. El ensayo de formación de tejido in vivo demostró la generación de neotejidos con características físicas y composición similar al cartílago elástico. Nuestros resultados indican que la biocompatibilidad del hidrogel de CS-PVA-ECH lo hace un andamio adecuado para aplicaciones en ingeniería de tejidos enfocadas a regeneración de cartílago elástico.


Asunto(s)
Humanos , Condrocitos/citología , Ingeniería de Tejidos/métodos , Quitosano/química , Cartílago Auricular/citología , Polivinilos/química , Materiales Biocompatibles , Inmunohistoquímica , Técnicas de Cultivo de Célula , Condrocitos/metabolismo , Hidrogeles , Epiclorhidrina/química
3.
Int. j. morphol ; 31(1): 321-328, mar. 2013. ilus
Artículo en Inglés | LILACS | ID: lil-676175

RESUMEN

The aim of our research was to create an osteogenic unit in the skulls of athymic mice; however, the first challenge we faced was to find sufficient and adequate data that would allow us to determine the morphological, immunohistochemical and microtopographical characteristics that could be used as normality standards in athymic mice skulls and, hence, a reference in the event of achieving the formation of de novo bone using the osteogenic unit we proposed. Knowing the normal bone morphology in the skull of athymic mice was a necessary precondition to develop subsequently an osteogenic unit possessing the Osteogenesis, Osteoinduction and Osteoconductivity that could be compared versus those in the normal bone during its formations and remodeling processes. Therefore, we conducted a pilot study to determine bone morphological characteristics in the skull of athymic mice by means of specific histological staining: hematoxylin-eosin and Von Kossa, for osteoid tissue and mineralized bone, and Masson Tri-chrome for ossified areas. We also use immunohistochemistry to detect bone formation markers: alkaline phosphatase resulting from osteoblastic activity stimulation, type 1 collagen a bonematrix structural protein; Osteopontine, a protein specifically synthesized by osteoblasts that favors cell proliferation and remodeling in bone defects; Osteocalcine, a peptide hormone produced by osteoblasts during bone formation; and, Runx 2, a transcription factor expressed by stem cells which stimulates bone differentiation. Likewise, we used electron microscopy on the newly formed tissue to determine the presence of organic deposits, such as calcium, phosphate and magnesium in bone tissue.


Propusimos la realización de una unidad osteogénica a desarrollar en cráneo de ratones atímicos, Sin embargo, nos enfrentamos al reto de encontrar datos que nos determinaran cuales eran las características morfológicas, inmunohistoquímicas y micro-topográficas del cráneo de estos ratones atímicos, que nos sirvieran como referencia de normalidad y tener un punto de comparación, en caso de que pudiéramos lograr la formación de hueso de novo, a partir de la unidad osteogénica que propusimos. El objetivo, de conocer la morfología del hueso normal de cráneo de ratones atímicos, fue desarrollar posteriormente una unidad osteogénica que reuniera las características de Osteogénesis, Osteoinducción y Osteoconducción, y, compararlas contra las que tiene dicho hueso normal durante su proceso de formación y remodelación. Así, realizamos un estudio piloto donde establecimos características morfológicas de hueso del cráneo de ratones atímicos, a través de tinciones histológicas específicas, con hematoxilina-eosina y von Kossa para buscar tejido osteoide y hueso mineralizado y Tricrómico de Massón para observar zonas osificadas. Además, analizamos el tejido óseo a través de inmunohistoquímica, con la finalidad de buscar marcadores de formación ósea como fosfatasa alcalina que es resultado del estímulo de la actividad osteoblástica; colágena 1, la cual es una proteína estructural de la matriz ósea; osteopontina, proteína sintetizada específicamente por osteoblastos que favorece la proliferación celular y la remodelación en defectos óseos; osteocalcina hormona peptídica producida por los osteoblastos durante la formación ósea y Runx 2 Factor de transcripción expresado por las células progenitoras que estimula la diferenciación ósea. Además, sometimos el tejido óseo a microscopía electrónica para determinar la presencia de depósitos de compuestos como calcio, fósforo y magnesio.


Asunto(s)
Animales , Ratas , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Osteogénesis , Regeneración Ósea , Ratas Desnudas , Inmunohistoquímica , Microscopía Electrónica/métodos , Colágeno Tipo I , Fosfatasa Alcalina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA