Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 153-159, 2022.
Artículo en Chino | WPRIM | ID: wpr-906998

RESUMEN

@#Tooth loss is accompanied by alveolar bone absorption or defect, resulting in insufficient bone and soft tissue. In addition to restoring the masticatory function of missing teeth, implant treatment should also needs to restore the contour and shape of the dental arch. Guided bone regeneration is a common means of bone increase. Xenogeneic granular bone substitute materials are widely used in the field of clinical bone augmentation due to their advantages of long degradation time and low immunogenicity, but other problems, such as inconvenient operation and low osteogenic activity, remain. Plasmatrix can effectively improve the effect of oral tissue regeneration and reduce the occurrence of postoperative complications, and its application in oral tissue regeneration is gradually increasing. This article first introduces the main application forms of plasmatrix in horizontal bone augmentation (mainly solid plasmatrix membrane and plasmatrix bone block), and reclassifies horizontal bone defects according to commonly used decision-making schemes in clinical bone augmentation, in other words, whether the implant can be placed in the ideal position and whether there is bone dehiscence after implantation. Type Ⅰ defects refers to the situation where the bone at the implant site can allow the insertion of an implant with ideal size, and there is no bone dehiscence around the implant, but the alveolar bone contour is not ideal; type Ⅱ defects refers to the situation that when an ideal size implant is placed at the implant site determined by the future prosthesis position, there will be bones on three sides of the implant, but there is bone dehiscence in the buccal bone wall (the length of bone dehiscence is less than 50% of the implant length); type Ⅲ defects refers to the situation where the bone volume at the implant site is not enough to for the placement of the ideal size implant at the ideal position, and bone grafting is required to restore the bone volume before the implant placement. The application of plasmatrix in different types of bone defects is then described. In type Ⅰ bone defects, the solid plasmatrix membrane is used instead of the collagen membrane; in type Ⅱ bone defects, the bone defect around the implant is filled by plasmatrix bone block and then covered with collagen membrane and solid plasmatrix membrane; and in type Ⅲ bone defects, plasmatrix bone block is used to replace autogenous bone block to fill the defect area, and titanium screws are used for fixation. The defect is then covered with a collagen membrane and a solid plasmatrix membrane. This article aims to provide oral clinicians with a comprehensive understanding of plasmatrix and simplify the guidelines for bone regeneration operations.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 837-847, 2022.
Artículo en Chino | WPRIM | ID: wpr-942635

RESUMEN

@#Vertical bone augmentation surgery still faces considerable challenges in clinical practice due to various problems, such as difficulty in restoring the ideal alveolar bone height and biological complications, and because it is highly technically sensitive. Plasmatrix is derived from patients’ own blood, and it can effectively promote the vascularization of the regenerated area, recruit stem cells, and reduce inflammation when used in vertical bone augmentation. Based on studies published worldwide, this article first divides vertical bone augmentation into 3 categories according to the height of the expected alveolar ridge, namely, type Ⅰ, the required vertical bone gain is less than 4 mm; type Ⅱ, the required vertical bone gain is between 4-8 mm; and type Ⅲ, the required vertical bone gain is greater than 8 mm. In the type Ⅰ vertical bone augmentation, the plasmatrix bone block is directly placed in the defect area and covered with the plasmatrix membrane before tension-free suturing; in the type Ⅱ vertical bone augmentation, the plasmatrix bone block should be placed in the defect area and fixed with titanium nails and then covered with an absorbable collagen membrane and plasmatrix membrane with a tension-free suture; in the type Ⅲ vertical bone augmentation, additional active ingredients (such as bone morphogenetic protein, autologous bone, etc.) should be added to the plasmatrix bone block and strong fixation (such as titanium nails) should be used. Absorbable collagen and plasmatrix membranes should be used to cover the surface of the bone block, and the flap should be sutured. According to different types of vertical bone augmentation categories, the above methods optimize the vertical bone augmentation effect. This article aims to provide a reference and guidelines for oral clinicians to fully understand plasmatrix and simplify the classification and operation of vertical bone augmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA