Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
J Genet ; 2020 Jan; 99: 1-14
Artículo | IMSEAR | ID: sea-215551

RESUMEN

Sophora alopecuroides belongs to the genus Sophora of the family Papilionoideae. It is mainly distributed in the desert and semidesert areas of northern China, and has high medicinal value and ecological function. Previous studies have reported the chemical composition and ecological functions of S. alopecuroides. However, only a few reports are available on the genomic information of S. alopecuroides, especially the chloroplast genome, which greatly limits the study of the evolutionary relationship between other species of Papilionoideae. Here, we report the complete chloroplast genome of S. alopecuroides. The size of the chloroplast genome is 155,207 bp, and the GC content is 36.44%. The S. alopecuroides chloroplast genome consists of 132 genes, including 83 protein-coding genes, 41 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Phylogenetic analysis revealed the taxonomic position of S. alopecuroidesin Papilionoideae, and the genus Sophora and the genus Ammopiptanthus were highly related. Comparative genomics analysis revealed the gene rearrangement in the evolution of S. alopecuroides. The comparison between S. alopecuroides and the species of the Papilionoideae identified a novel 23 kb inversion between the trnC-GCA and trnF-GAA which occurred before the divergence of Sophora and Ammopiptanthus of Thermopsideae. This study provided an essential data for the understanding of phylogenetic status of S. alopecuroides.

2.
Biol. Res ; 45(1): 75-80, 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-626750

RESUMEN

The mechanisms of exercise-induced fatigue have not been investigated using proteomic techniques, an approach that could improve our understanding and generate novel information regarding the effects of exercise. In this study, the proteom alterations of rat skeletal muscle were investigated during exercise-induced fatigue. The proteins were extracted from the skeletal muscle of SD rat thigh, and then analyzed by two-dimensional electrophoresis and PDQuest software. Compared to control samples, 10 significantly altered proteins were found in exercise samples, two of them were upregulated and eight of them were downregulated. These proteins were identified by MALDI TOF-MS. The two upregulated proteins were identified as MLC1 and myosin L2 (DTNB) regulatory light-chain precursors. The eight decreased proteins are Glyceraldehyde-3-phosphate Dehydrogenas (GAPDH); Beta enolase; Creatine kinase M chain (M-CK); ATP-AMP Transphosphorylase (AK1); myosin heavy chain (MHC); actin; Troponin I, fast-skeletal muscle (Troponin I fast-twitch isoform), fsTnI; Troponin T, fast-skeletal muscle isoforms (TnTF). In these proteins, four of the eight decreased proteins are related directly or indirectly to exercise induced fatigue. The other proteins represent diverse sets of proteins including enzymyes related to energy metabolism, skeletal muscle fabric protein and protein with unknown functions. They did not exhibit evident relationship with exercise-induced fatigue. Whereas the two identified increased proteins exhibit evident relationship with fatigue. These findings will help in understanding the mechanisms involved in exercise-induced fatigue.


Asunto(s)
Animales , Masculino , Ratas , Fatiga Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Esfuerzo Físico/fisiología , Peso Corporal/fisiología , Electroforesis en Gel Bidimensional , Metabolismo Energético/fisiología , Espectrometría de Masas , Modelos Animales , Proteínas Musculares/química , Proteómica , Distribución Aleatoria , Ratas Sprague-Dawley , Natación/fisiología , Troponina I/química , Troponina I/metabolismo , Troponina T/química , Troponina T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA