Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. j. med. biol. res ; 52(9): e8525, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1011614

RESUMEN

Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1β, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1β by suppressing the increase in IL-1β, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1β-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1β to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Condrocitos/efectos de los fármacos , Ginsenósidos/farmacología , Interleucina-1beta/efectos de los fármacos , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Dinoprostona/metabolismo , Supervivencia Celular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Dolor de la Región Lumbar/metabolismo , Óxido Nítrico Sintasa/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Ginsenósidos/metabolismo , Ciclooxigenasa 2/metabolismo , Agrecanos/metabolismo , Interleucina-1beta/metabolismo , Ubiquitinación , Núcleo Pulposo/citología , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA